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Abstract 

Alkane hydroxylase (AlkB), a membrane-bound enzyme has high industrial demand; however, its economical produc-
tion remains challenging due to its intrinsic nature and co-factor dependency. In the current study, various critical 
process parameters for optimum production of AlkB have been optimized through feed forward neural network 
(FFNN) and genetic algorithm (GA) models using Penicillium chrysogenum SNP5 (MTCC13144). AlkB specific activity 
under preliminary un-optimized conditions i.e., 1% hexadecane, 7.4 pH, 11 days incubation time, 28 °C incubation 
temperature and 1 ml of inoculum size was 100 U/mg. ‘One variable at a time’ (OVAT) strategy was used to identify 
optimum physicochemical parameters and then its output data was fed to develop a model of FFNN with ‘6-12-1’ 
topology. Outputs of FFNN were further optimized through GA to minimize errors and intensify search level. This has 
provided superior predictive performances with 0.053 U/mg overall mean absolute percentage error (MAPE), 6.801 U/
mg root mean square errors (RMSE), and 0.987 overall correlation coefficient (R). The AlkB specific activity improved 
by 3.5-fold, i.e., from 100 U/mg under preliminary un-optimized conditions to 351.32 U/mg under optimum physico-
chemical conditions obtained through FFNN-GA hybrid method, i.e., hexadecane (carbon source): 1.56% v/v, FeSO4: 
0.63 mM, incubation temperature: 27.40 °C, pH: 7.38, incubation time: 12.35 days and inoculums size: 1.33 ml. The 
developed process would be a stepping stone to fulfill the high industrial demands of  Alkane hydroxylase.
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Introduction
The membrane-bound alkane hydroxylase (AlkB) is a 
versatile biocatalyst that introduces molecular oxygen 
in inert alkanes with regio and stereoselectivity. The 
AlkB system is comprised of three subunits: AlkB, solu-
ble rubredoxin reductase, and soluble rubredoxin. AlkB 
incorporates molecular oxygen from O2 to the alkane and 
the remaining oxygen gets reduced to water by electrons 
released from rubredoxin on the action of rubredoxin 

reductase (Eidani et al. 2012). Various divergent forms of 
Alkane hydroxylases ubiquitously found worldwide viz. 
soluble methane monooxygenase (sMMO) and copper-
containing methane monooxygenase (pMMO) are capa-
ble of oxidizing hydrocarbons ranging from C1 to C8 (Van 
Beilen and Funhoff 2007). While, integral membrane-
bound AlkB insert oxygen in C5 to C16 (Aliakbari et  al. 
2014), other forms such as cytochrome P450, LadA, or 
AlmA assimilate oxygen to alkanes larger than C20 (Wang 
and Shao 2012) and sometimes opt for medium-chain 
alkanes as substrate (Xu et al. 2015).

AlkB has tremendous market demand in synthesiz-
ing industrially important molecules such as secondary 

Open Access

*Correspondence:  sn5@mnnit.ac.in
Department of Biotechnology, Motilal Nehru National Institute 
of Technology Allahabad, Prayagraj, U.P. 211004, India

http://orcid.org/0000-0002-9974-9171
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13568-022-01366-1&domain=pdf


Page 2 of 13Das and Negi ﻿AMB Express           (2022) 12:28 

metabolites, steroids, polyketides, pharmaceutical com-
pounds, cosmetics, fragrance and agrochemical inter-
mediates, etc. (Rojo 2010; Ramu et al. 2012). It has some 
other promising applications like conversion of petro-
leum waste into activated intermediates, bioremediation 
and biotransformation. In general, either whole cell or 
partially purified AlkB may be used in biotransformation 
depending upon the requirements. Ramu et  al. (2012) 
explored this enzyme in a whole-cell biotransformation 
system by recombinant expression in Escherichia coli to 
regioselectively synthesize 2,2-, 3,3- and 4,4-difluorooc-
tan-1-ols, from simple and inexpensive starting materials. 
However, opting for whole cells for oxidation becomes 
challenging due to the slow uptake of a lipophilic sub-
strate which results in the production of toxic com-
pounds and a low oxygen transfer rate (Ayala and Toress 
2004). Alkane hydroxylases have been well explored in 
therapeutics also, where it is used to treat inflammation, 
vascular liver diseases and peroxisome disorders of fatty 
acid metabolism.

The alkane hydroxylase system is distributed in a wide 
range of bacterial strains (Burkholderia, Pseudomonas, 
Acinetobacter, Alcanivorax, and Rhodococcus strains) and 
a few fungal strains like Aspergillus sp. (Nie et  al. 2014; 
Kadri et al. 2018). Its overproduction has been achieved 
through overexpressing the all gene of both the gram-
negative and gram-positive bacteria into another host; 
however, rubredoxin and rubredoxin reductase were 
reported as their essential cofactors (Luo et al. 2015). It 
has been reported by Kadri et al. (2018) and Al-Hawash 
et  al. (2018) that media engineering and selection of 
appropriate carbon sources improved AlkB specific activ-
ity in Alcanivorax borkumensis and Aspergillus sp. RFC-
1. From the results and observations of earlier studies, 
it was observed that the bottleneck of the process is its 
intrinsic nature and cofactor dependency. Therefore, to 
overcome these bottlenecks various interdisciplinary 
approaches and techniques have to be put together to 
achieve optimum specific activity of AlkB economically. 
Being membrane-bound, its yield remains dependent 
on cell growth and concentration; and further cofactors 
are essential for its functions, hence, its yield could be 
enhanced through optimizing the physicochemical criti-
cal parameters, which influence cell growth most. The 
global scientific and industrial world has been witnessing 
the increasing use of FFNN and GA together for process 
optimization for enhanced product yield.

An experimental design, i.e., screening and optimiza-
tion design is considered pivotal to computer-assisted 
design-guided statistical exercise. The aims of factor 
screening and optimization can be accomplished by 
opting for a design-guided experimental strategy using 
selected experimental designs. Experimental designs are 

modeled by selecting appropriate mathematical mod-
els like linear, quadratic and cubic to generate 2D and 
3D-response variables to figure out inter and intra facto-
rial interactions. To search for optimum yield or solution, 
various numerical and graphical optimization techniques 
such as FFNN, desirability function and overlay plot are 
opted, which are located in design and control spaces. 
Design space is a multidimensional combination of input 
and response variables to determine the optimal solution 
with high accuracy and quality.

In bioprocesses optimization (Negi et  al. 2020), pat-
tern recognition in spectrum data, functional analysis of 
genomes and proteomes (Wardah et  al. 2019) and their 
nonlinear functions are designed through FFNN (May 
et al. 2011). Many studies reported that FFNN has better 
efficiency, accuracy and yield as compared to the other 
statistical optimization methods such as RSM (Prakash 
Maran and Priya 2015). Genetic algorithms (GAs) are 
randomly determined search methods based on some 
basic operations like selection, reproduction or crosso-
ver, and mutation as natural genetics to find out the best 
fitness value/outcome (Murthy 2012). GA has also been 
well explored by many researchers to achieve optimum 
process parameters for enhancing product yield in vari-
ous biological systems (Kana et  al. 2012). In previous 
studies, coupled FFNN-GA system has been effectively 
used for optimizing the production of cellulase (Chang 
et  al. 2011) and glutaminase (Sathish and Prakasham 
2010). These studies concluded that FFNN-GA coupled 
system has better proficiency with minimum errors com-
pared to the other optimization methodologies. Hence 
FFNN-GA coupled system is emerging as an effective 
tool in optimization studies (Singh et al. 2017).

In the present study, FFNN-GA coupled system was 
used to optimize fermentation parameters to achieve 
maximum specific activity of AlkB from Penicillium chry-
sogenum SNP5. FFNN was used for the training of exper-
imental data and GA was used for the optimization of 
input variables further with the help of weight and biases 
generated from the neural network.

Material and methods
Microorganism and media chemicals
Penicillium chrysogenum SNP5 (MTCC13144) strain 
was locally isolated from grease contaminated soil of the 
diesel loco shed and identified by Microbial Type Cul-
ture Collection, Chandigarh, India. Its ITS/5.8S rRNA 
and the β-tubulin gene sequences have been submit-
ted to GenBank and Bankit with accession numbers: 
OL336466 and OL352703 respectively. Triton X-100, 
Phenylmethylsulfonyl fluoride (PMSF), Lauryldimethyl-
amine oxide (LDAO), Nicotinamide adenine dinucleotide 
(NAD) + hydrogen (NADH), other medium components 
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and Czapek-dox medium were procured from Sisco 
Research Laboratories Pvt. Ltd. (Mumbai, India). Hexa-
decane, Digitonin and THB (Tetrahydrobiopterin) were 
procured from TCI Chemicals Pvt. Ltd. (India).

Production of alkane hydroxylase under submerged 
fermentation (SmF)
Production of AlkB was performed in a 250  ml Erlen-
meyer flask with a working volume of 100  ml. Ini-
tially, hexadecane 1% (v/v), 0.5% YEPD, 0.1% glucose 
and 1  mM TBH were dissolved in 50  ml of Cza-
pek-dox broth (NaNO3—2.5  g/l, KH2PO4—1.0  g/l, 
MgSO4⋅7H2O—0.5 g/l, KCl—0.5 g/l, FeSO4—0.45 g/l) and 
final volume of 100 ml was maintained by using distilled 
water. The flasks were autoclaved at 121  °C, 121psi for 
15  min. Penicillium chrysogenum SNP5 (MTCC13144) 
strain was cultivated on potato dextrose agar (PDA) slant 
and incubated for 6–7 days. The inoculum was prepared 
with sterile distilled water by maintaining the spore’s 
concentration of 1.4 × 107 spores/ml. Each flask was 
inoculated with 1.0 ml of spore suspension and incubated 
at 28 °C for 11 days, and growth was observed.

Extraction of AlkB and its activity measurement
After fermentation, the cells were harvested by centrifug-
ing the fermented broth at 7826g for 10 min to separate 
the cells. The cell pellets containing AlkB were washed 
two times with Tris–HCl buffer (pH 7.4) and lysed to 
recover the enzyme by using ultrasonicator (Model SKL-
500D) Ningbo Haishu Sklon Electronics Instrument Co, 
Ltd. (Mainland, China) at 70  kHz using 9  s on 9  s off 
pulsating cycle for 5 min in lysis buffer (150 mM NaCl, 
20% (v/v) glycerol, 50 mM Tris HCl, 1 mM digitonin, 2% 
Triton X-100 and 1 mM PMSF) and then centrifuged at 
11,269g for 15 min. The clear supernatant was collected, 
and the remaining cell pellet was resonicated followed by 
centrifugation, and both the supernatant were pooled to 
serve as crude AlkB enzyme for further study.

AlkB activity in the crude extract was measured by a 
continuous method using NADH as cofactor and hexa-
decane as substrate by a modified protocol of McKenna 
and Coon (1970). Reaction mixture contained 100  mM 
Tris HCl buffer (pH—7.4), 0.035% LDAO (1.5 CMC), 
20% glycerol, 100  μl crude enzyme, 1  mM hexadecane. 
A mixture lacking NADH was used as a negative control. 
The reaction mixture was then incubated at room tem-
perature for 20  min. The reaction was initiated by add-
ing NADH to a final concentration of 50  μM. The rate 
of NADH consumption was determined by monitoring 
the change in absorbance at 340  nm at room tempera-
ture for 10  min. One unit is defined as the amount of 

enzyme required for the consumption of 1 μM of NADH 
(ε340 = 6220 M−1 cm−1) per min.

Optimization of process parameters by OVAT method
SmF optimization experiments were planned according 
to OVAT method with six selected process parameters 
as mentioned in Table  1 i.e., hexadecane concentration 
(as carbon source), incubation temperature, pH of the 
media, incubation time, inoculum size and metal ion 
concentration (FeSO4). Tested ranges of variables were 
hexadecane (0.25–4% v/v), temperature (20–38  °C), pH 
(4–9), incubation time (5–14 days), inoculum size (0.25–
3.0 ml) and FeSO4 (0.05–0.8 mM).

Modeling of optimization process by FFNN
The feed-forward neural network along with the back-
propagation learning algorithm has been employed in 
this study to optimize nonlinear data obtained from the 
‘one variable at a time’ method and to reduce the experi-
mental error. The network consists of input, hidden and 
output layers along with additional nodes termed as the 
bias (biasI and biasH). The connection between each layer 
has been denoted as weight (weightH and weightO). Tan 
sigmoid functions have been used for optimum output. 
The network outcomes such as weights and biases have 
been expressed with the following equation (Norgaard 
2000; Izadifar 2005).

In the present study, six process parameters were 
selected, i.e., hexadecane (carbon source) concentration, 
temperature, pH, incubation time, inoculum size and 
metal ion concentration (i.e., FeSO4) to enhance the AlkB 
productivity. Process parameters were initially optimized 
with the ‘OVAT’ method by considering the upper and 
lower limits of each parameter (Table 1). Total 47 experi-
mental sets were performed using the OVAT method, 
and later it was extended upto 103 sets using the regres-
sion equation. Out of 103 sets, 73 (~ 70%) were selected 
for training, 15 (~ 15%) were used for validation, and 
the rest of the 15% data were used for testing in FFNN 
modeling (Table  2). The neural network was trained by 

Table 1  Selected parameters for optimization through ‘OVAT’ 
method for AlkB by Penicillium chrysogenum SNP5 under SmF

Variables 
code

Variables name Lower bound Upper bound

V1 Hexadecane % 0.25 4

V2 Temperature (°C) 20 38

V3 pH 4 9

V4 Incubation time (Days) 5 14

V5 Inoculum size (ml) 0.25 3

V6 FeSO4 conc. (mM) 0.05 0.8
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Table 2  Experimental ‘OVAT’ data and FFNN predicted data for AlkB specific activity

S. no. V1 V2 V3 V4 V5 V6 Experimental AlkB 
specific activity (U/mg)

Predicted AlkB specific 
activity (U/mg)

Error

1 0.25 28 7 9 1 0.1 64.8 57.17 7.62

2 0.5 28 7 9 1 0.1 74.53 69.17 5.35

3 0.75 28 7 9 1 0.1 88.38 84.82 3.55

4 1 28 7 9 1 0.1 97.41 100.50 − 3.09

5 1.25 28 7 9 1 0.1 100.45 112.56 − 12.1

6 1.5 28 7 9 1 0.1 117.93 119.80 − 1.87

7 1.75 28 7 9 1 0.1 114.43 123.10 − 8.67

8 2 28 7 9 1 0.1 112.64 123.85 − 11.2

9 2.25 28 7 9 1 0.1 112.79 123.14 − 10.3

10 2.5 28 7 9 1 0.1 112.51 121.64 − 9.13

11 2.75 28 7 9 1 0.1 112.12 119.70 − 7.58

12 3 28 7 9 1 0.1 111.77 117.50 − 5.73

13 3.25 28 7 9 1 0.1 111.56 115.11 − 3.55

14 3.5 28 7 9 1 0.1 111.66 112.55 − 0.89

15 3.75 28 7 9 1 0.1 110.97 109.79 1.17

16 4 28 7 9 1 0.1 110.39 106.78 3.60

17 1.5 20 7 9 1 0.1 75.52 78.51 − 2.99

18 1.5 21 7 9 1 0.1 80.33 79.05 1.27

19 1.5 22 7 9 1 0.1 84.23 80.77 3.45

20 1.5 23 7 9 1 0.1 87.65 84.76 2.88

21 1.5 24 7 9 1 0.1 93.66 93.06 0.59

22 1.5 25 7 9 1 0.1 100.71 108.41 − 7.70

23 1.5 26 7 9 1 0.1 120.44 130.55 − 10.11

24 1.5 27 7 9 1 0.1 142.25 140.41 1.83

25 1.5 28 7 9 1 0.1 140.44 119.80 20.63

26 1.5 29 7 9 1 0.1 138.33 122.19 16.13

27 1.5 30 7 9 1 0.1 137.13 133.15 3.976

28 1.5 31 7 9 1 0.1 136.77 135.37 1.39

29 1.5 32 7 9 1 0.1 135.56 129.16 6.39

30 1.5 33 7 9 1 0.1 123.44 117.46 5.97

31 1.5 34 7 9 1 0.1 96.46 102.78 − 6.32

32 1.5 35 7 9 1 0.1 93.22 86.96 6.25

33 1.5 36 7 9 1 0.1 60.6 71.36 − 10.76

34 1.5 37 7 9 1 0.1 42.55 56.90 − 14.35

35 1.5 38 7 9 1 0.1 42.02 44.13 − 2.11

36 1.5 27 4 9 1 0.1 39.46 34.51 4.94

37 1.5 27 4.25 9 1 0.1 40.13 40.10 0.021

38 1.5 27 4.5 9 1 0.1 41.9 45.22 − 3.32

39 1.5 27 4.75 9 1 0.1 43.55 49.65 − 6.10

40 1.5 27 5 9 1 0.1 53.46 53.34 0.11

41 1.5 27 5.25 9 1 0.1 56.67 56.43 0.23

42 1.5 27 5.5 9 1 0.1 66.75 59.41 7.33

43 1.5 27 5.75 9 1 0.1 67.89 63.67 4.21

44 1.5 27 6 9 1 0.1 73.71 72.40 1.30

45 1.5 27 6.25 9 1 0.1 87.43 90.08 − 2.65

46 1.5 27 6.5 9 1 0.1 110.85 114.85 − 4.00

47 1.5 27 6.75 9 1 0.1 132.23 134.05 − 1.82

48 1.5 27 7 9 1 0.1 148.27 140.41 7.85

49 1.5 27 7.25 9 1 0.1 137.76 137.13 0.62
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Table 2  (continued)

S. no. V1 V2 V3 V4 V5 V6 Experimental AlkB 
specific activity (U/mg)

Predicted AlkB specific 
activity (U/mg)

Error

50 1.5 27 7.5 9 1 0.1 135.68 128.47 7.20

51 1.5 27 7.75 9 1 0.1 121.3 116.76 4.53

52 1.5 27 8 9 1 0.1 104.81 103.18 1.62

53 1.5 27 8.25 9 1 0.1 79.55 88.59 − 9.04

54 1.5 27 8.5 9 1 0.1 69.19 73.74 − 4.55

55 1.5 27 8.75 9 1 0.1 43.66 59.37 − 15.71

56 1.5 27 9 9 1 0.1 39.44 46.18 − 6.74

57 1.5 27 7 5 1 0.1 80.56 89.64 − 9.08

58 1.5 27 7 5.5 1 0.1 96.34 94.52 1.81

59 1.5 27 7 6 1 0.1 99.39 99.97 − 0.58

60 1.5 27 7 6.5 1 0.1 100.34 105.99 − 5.65

61 1.5 27 7 7 1 0.1 115.79 112.58 3.25

62 1.5 27 7 7.5 1 0.1 120.93 119.47 1.45

63 1.5 27 7 8 1 0.1 139.98 126.62 13.35

64 1.5 27 7 8.5 1 0.1 141.32 133.71 7.605

65 1.5 27 7 9 1 0.1 143.06 140.41 2.64

66 1.5 27 7 9.5 1 0.1 144.12 146.32 − 2.20

67 1.5 27 7 10 1 0.1 144.5 151.07 − 6.57

68 1.5 27 7 10.5 1 0.1 142.11 154.29 − 12.19

69 1.5 27 7 11 1 0.1 148.6 155.75 − 7.15

70 1.5 27 7 11.5 1 0.1 148.93 155.37 − 6.44

71 1.5 27 7 12 1 0.1 155.5 153.30 2.19

72 1.5 27 7 12.5 1 0.1 149.45 149.97 − 0.52

73 1.5 27 7 13 1 0.1 138.5 146.00 − 7.50

74 1.5 27 7 13.5 1 0.1 136.89 142.21 − 5.32

75 1.5 27 7 14 1 0.1 136.96 139.58 − 2.62

76 1.5 27 7 12 0.25 0.1 133.65 130.72 2.92

77 1.5 27 7 12 0.5 0.1 146.44 139.22 7.21

78 1.5 27 7 12 0.75 0.1 147.66 147.40 0.253

79 1.5 27 7 12 1 0.1 150.2 153.30 − 3.10

80 1.5 27 7 12 1.25 0.1 155.65 155.77 − 0.126

81 1.5 27 7 12 1.5 0.1 162.25 155.13 7.119

82 1.5 27 7 12 1.75 0.1 161.44 153.36 8.07

83 1.5 27 7 12 2 0.1 160.94 153.25 7.68

84 1.5 27 7 12 2.25 0.1 160.11 154.93 5.17

85 1.5 27 7 12 2.5 0.1 160.33 154.35 5.97

86 1.5 27 7 12 2.75 0.1 158.45 149.29 9.15

87 1.5 27 7 12 3 0.1 150.77 141.48 9.28

88 1.5 27 7 12 1.5 0.05 147.44 148.59 − 1.15

89 1.5 27 7 12 1.5 0.15 158.33 160.52 − 2.19

90 1.5 27 7 12 1.5 0.1 164.06 155.13 8.92

91 1.5 27 7 12 1.5 0.25 164.33 172.13 − 7.80

92 1.5 27 7 12 1.5 0.2 165.1 165.91 − 0.81

93 1.5 27 7 12 1.5 0.35 169.43 185.65 − 16.2

94 1.5 27 7 12 1.5 0.3 185.38 179.12 6.25

95 1.5 27 7 12 1.5 0.45 184.32 191.79 − 7.47

96 1.5 27 7 12 1.5 0.4 198.94 190.09 8.84

97 1.5 27 7 12 1.5 0.5 198 191.66 6.33

98 1.5 27 7 12 1.5 0.55 197.37 191.21 6.15
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using MATLAB R2020a (The MathWorks, Inc., Natick, 
MA, USA). Levenberg–Marquardt (trainlm) algorithm 
was used and numbers of hidden neurons were increased 
one by one to obtain the best correlation. The best train-
ing run was determined by the coefficient R for training, 
validation and test, which describes the extent of back-
propagation in the modeled network. The mean absolute 
percentage error (MAPE) and root mean square error 
(RMSE) were calculated using the experimental output 
and predicted output as described previously (Zhang and 
Fang 2006).

GA optimization
Optimization with a GA was carried out using FFNN 
outputs (i.e., weights and biases) by assigning fitness 
functions to each population. The global optimum was 
localized on objective function using genetic algorithm 
outputs. Our main objective was to find optimum input 
variables for the highest specific activity of AlkB by fixing 
the lower and upper bound of input variables (Table 1). 
For optimization of neural network output, the GA tool-
box of MATLAB R2020a (The MathWorks, Inc., Natick, 
MA, USA) was used to achieve optimum conditions 
in the given range of input variables. GA optimization 
parameters, i.e., population size as default (i.e., 50 for five 
or fewer otherwise 200), crossover probability (i.e., 0.8), 
mutation probability (i.e., 0.01) and the maximum num-
ber of generations (i.e., 500) were considered based on 
literature (Prakasham et al. 2011).

Results
Our previous studies revealed that Penicillium chrysoge-
num SNP5 (MTCC13144) has great potential for conver-
sion of hydrocarbons of complex grease waste into fatty 
acids (Kumar et al. 2012; Kumari et al. 2017). Therefore, 
in the current study, Penicillium chrysogenum SNP5 has 
been explored for the production of AlkB, which is a key 
player in the uptake of hydrocarbons as a carbon source. 
AlkB specific activity is growth associated, therefore, 
depends on various fermentation parameters. In this 
study, an initial experimental setup was done by taking 
1% (v/v) hexadecane, 0.5% (w/v) YEPD, 0.1% (w/v) glu-
cose as carbon source, and 1  mM TBH as a modulator 

for inducing higher production of AlkB under phys-
icochemical conditions of pH (7.4), incubation time 
(11 days), incubation temperature (28  °C) and inoculum 
size (1  ml). The maximum AlkB specific activity found 
with this setup was 100 U/mg. Further, to find optimum 
conditions for improved AlkB specific activity, these 
parameters were varied between the assigned lower and 
upper bounds (Table 1), and the experimental layout was 
prepared by the ‘OVAT’ method (Irfan et al. 2014) where 
one factor was varied at a time keeping others constant 
(Table 2). A total of 103 experimental sets were obtained 
and the data were analyzed using an FFNN, where pre-
dicted values were compared with experimental outputs. 
It was observed that the AlkB specific activity altered 
with variation in different fermentation conditions 
(Table 2).

Further, FFNN was trained one by one with Lev-
enberg–Marquardt (Rumelhart et  al. 1986), Bayesian 
(MacKay 1992), Conjugate (Powell 1977), and scaled 
conjugate gradient (Moller 1993) methods. Out of all 
these methods, Levenberg–Marquardt back-propagation 
with trainlm algorithm showed a better R value (i.e., for 
Training: 0.987, validation: 0.984, test: 0.988, and over-
all: 0.987) shown in (Fig. 1) along with experimental out-
puts (41.9 to 198.94 U/mg) and simulated output (39.14 
to 200.03 U/mg). The mean absolute percentage error 
(MAPE) and root mean square error (RMSE) observed 
were 0.053 and 6.801 U/mg. The final weights and biases 
values were optimized by minimizing the network error 
(Table 3), and the optimum result was found in a ‘6-12-1’ 
FFNN network topology for this study (Fig. 2).  

The network performance by mean square error (MSE) 
(Fig.  3) and network error by error histogram (Fig.  4) 
were also analyzed. The network performance plot shows 
that the mean square error for training, validation and 
test converged after the 9th epoch (Fig. 3). The error his-
togram showed that most of the training errors occurred 
between −  9.77 and 6.8 values (Fig. 4). The overall out-
come of the neural network showed the goodness of the 
‘6-12-1’ neural topology and excellent correlation to train 
the input parameter data for the production of AlkB.

The outputs obtained from a neural network were 
optimized to get the best optimum input parameters for 

Table 2  (continued)

S. no. V1 V2 V3 V4 V5 V6 Experimental AlkB 
specific activity (U/mg)

Predicted AlkB specific 
activity (U/mg)

Error

99 1.5 27 7 12 1.5 0.6 192.69 191.37 1.31

100 1.5 27 7 12 1.5 0.65 193.44 192.27 1.160

101 1.5 27 7 12 1.5 0.7 195.56 193.77 1.78

102 1.5 27 7 12 1.5 0.75 194.33 195.68 − 1.35

103 1.5 27 7 12 1.5 0.8 197.06 197.92 − 0.86
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maximum AlkB specific activity using a genetic algo-
rithm because existing algorithms possess only local 
optimization solutions for a nonlinear function, whereas, 
a genetic algorithm exhibits a global solution. After large 
numbers of genetic algorithms trials, the five best input 
conditions were selected (Table  4), which could depict 
the fittest possible input conditions. All these condi-
tions were employed for further verification by setting up 
experiments, followed by the comparison of experimen-
tal AlkB specific activity with genetic algorithm outputs. 
An increase in AlkB specific activity was observed by 
77.4% (198.94 to 351.32 U/mg) when FFNN outputs were 
optimized with GA.

Figure 5 depicts the optimum output of GA optimiza-
tion along with the contribution of each variable where 

fitness values were expressed in terms of the mean value. 
The best fitness was obtained at the 161th generation at 
which fitness value and mean value were found aligned 
at a constant rate. Similar results have been reported by 
Subba Rao et al. (2008) for optimization of protease yield 
and Pappu and Gummadi (2017) for xylitol production.

Based on the results obtained after FFNN-GA optimi-
zation, surface contour plots were generated to examine 
the impact of one variable on another using fitness func-
tion with MATLAB R2020a. The maximum AlkB specific 
activity observed with the combined effect of two vari-
ables at the optimum environment is shown in Fig. 6. The 
variation in AlkB specific activity could be seen with the 
variation of hexadecane from 0.25 to 3% and incubation 
temperature from 20 to 38  °C (Fig. 6a). Maximum AlkB 

Fig. 1  Correlation chart of feed forward neural network predicted and experimental AlkB specific activity
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specific activity was observed with 1.5% of hexadecane 
as carbon source and incubation temperature of 38  °C. 
Further increase in hexadecane concentration beyond 
1.5% led to a decrease in activity, which indicated that 
hexadecane concentration and incubation temperature 
together have a higher impact over AlkB production. Fig-
ure  6b indicated variation in AlkB specific activity with 
variation in inoculum size (1–3 ml) and variation in sup-
plementation of hexadecane (0.5–3%) in the medium. 
The maximum AlkB specific activity was observed up to 
1 ml of inoculum size and beyond this, there was a sharp 
decline in its specific activity. However, hexadecane con-
centration from 1 to 3% didn’t influence AlkB specific 
activity much. This indicated that inoculum size played 
the role of key regulator for AlkB specific activity when 
varied in combination with hexadecane concentration. 

Table 3  The weight and bias values obtained from the FFNN at optimum conditions

Weight between input and hidden nodes (IW) Bias I Weight between hidden and 
output nodes (LW)

Bias H

V1 V2 V3 V4 V5 V6

1.01 1.275 0.446 0.372 0.756 0.814 − 2.482 1.219 0.0281

− 0.915 − 0.41 2.135 − 0.075 − 0.329 − 2.589 − 0.595 0.207

− 1.579 0.538 0.895 1.921 − 1.05 − 1.047 2.614 0.945

1.18 − 0.74 − 0.813 − 1.187 0.707 1.109 − 1.57 − 0.123

0.33 − 0.499 0.329 0.110 0.407 0.538 − 0.121 − 0.264

− 2.62 1.682 − 5.4 0.632 0.96 − 0.507 − 0.584 − 0.669

0.032 − 0.016 2.562 3.110 2.761 2.33 − 1.32 0.332

− 0.202 3.281 0.284 0.887 0.009 0.626 1.136 1.533

− 0.097 − 1.15 − 1.61 − 1.448 − 0.303 − 1.302 − 0.282 0.766

0.295 − 9.422 − 1.546 − 0.158 1.4 1.23 0.532 0.766

− 0.825 1.111 − 0.611 − 0.107 0.49 1.122 − 2.267 0.237

0.928 1.386 0.295 0.377 − 0.702 − 0.658 2.606 − 0.794

Fig. 2  Feed forward neural network architecture (i.e., 6-12-1 
topology)

Fig. 3  Performance plot obtained after feed-forward neural network 
training

Fig. 4  Error histogram obtained after feed forward neural network 
training
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The pattern of the contour plot between pH and incu-
bation temperature indicated that temperature in the 
range of 20–35 °C did not influence AlkB specific activ-
ity significantly, whereas pH above 5 has shown a nega-
tive impact on it (Fig. 6c). In Fig. 6d combined impact of 
incubation period and inoculum size on AlkB specific 
activity is shown, which indicates that less than 8 days of 
incubation and more than 1.5 ml of inoculum size have 
the least impact on AlkB specific activity. From Fig.  6e, 
it can be observed that AlkB specific activity remained 
constant with 0.1–0.8  mM FeSO4 concentration and 
decreased with hexadecane concentration of more than 
1.5%. Interaction of inoculum size (1–3  ml) and incu-
bation temperature (20  °C to 38  °C) showed maximum 
activity near 30  °C temperature and 2.5 ml of inoculum 
size (Fig. 6f ) and reflected that both parameters were col-
lectively regulating AlkB specific activity. An incubation 
time (7–11.5 days) with pH (4.5–8.5) together had a posi-
tive impact on activity, whereas, an incubation time of 
more than 12 days didn’t have any impact irrespective of 
the pH value (Fig. 6g). From Fig. 6h it could be concluded 
that AlkB specific activity was maximum with 1.5% of 
hexadecane with 8–12  days of incubation, however, it 
sharply declined beyond 1.5% of hexadecane. The con-
tour surface plots (Fig.  6) show that each combination/
individual fermentation parameter has an effective con-
tribution to the overall AlkB specific activity.

Discussion
Considering promising industrial applications of AlkB, 
process parameters were optimized for the production of 
AlkB from Penicillium chrysogenum SNP5. It has shown 
good growth on hexadecane, and its uptake as a carbon 
source was confirmed by AlkB specific activity of 100 U/
mg and the presence of fatty acids in ferment. Banu et al. 
(2010) and Kadri et al. (2018) have also reported similar 
results. Submerged fermentation was chosen because it 
provides larger surface area and high oxygen availability 
which assisted proper growth of Penicillium chrysogenum 
SNP5 and facilitated the uptake of hexadecane as a car-
bon source. With submerged fermentation, separation of 
cell biomass and extraction of membrane-bound AlkB is 

easier than solid-state fermentation (Flores-Flores et  al. 
2011). It is well established that yield of enzymes varies 
with critical process parameters and microbial strains 
because the growth and metabolism of microbes are 
dependent on the various physicochemical environment, 
nutritional factors and combinatorial impact of various 
process parameters (Vishwanatha et al. 2010; Saxena and 
Singh 2011; Narra et  al. 2012). Six input variables were 
considered to study their individual and combined effect 
on AlkB specific activity through OVAT. Hexadecane was 
used as a carbon source in the media, as AlkB had shown 
high specificity for it, hence could act as an inducer for 
AlkB production. The pH of the media becomes crucial 
in case of submerged fermentation and AlkB is quite sus-
ceptible to pH as well. As AlkB is integral protein (mem-
brane bound), hence its yield is biomass dependant and 
growth associated, therefore, incubation temperature 
and period would play critical role in achieving optimum 
yield. The number of viable cells in the inoculum ensures 
rapid proliferation and biomass synthesis which results in 
increased production of enzymes, hence, inoculums size 
was selected as an input parameter. FeSO4 was selected 
as one of the input parameters because AlkB is a non-
heme iron-containing enzyme whose catalytic property 
is strongly dependent upon iron. Further, data obtained 
from OVAT were used for FFNN-GA to achieve opti-
mum yield with the limited experimental data.

FFNN-GA optimization showed very promising results 
in terms of AlkB specific activity. The results obtained 
from FFNN like correlation charts (Fig. 1), performance 
plot (Fig.  3) and error histogram (Fig.  4) indicated that 
training of neural network was done very accurately with 
network topology of ‘6-12-1’ (Fig.  2). These results are 
close to the published results (Das et al. 2015; Negi et al. 
2020; Suryawanshi et al. 2020). A high degree of accuracy 
of optimization is attributed to the selection of appropri-
ate training algorithms (i.e., trainlm), several hidden lay-
ers and the size of ‘one-variable-at-a-time’ data for the 
training of the network.

The GA optimization utilizes the FFNN outputs to pro-
vide the global optimum solution for non-linear prob-
lems. Results obtained after GA optimization (Table  4) 

Table 4  The fittest optimum process parameters optimized with a genetic algorithm and verified AlkB specific activity

No. of GA runs V1 V2 V3 V4 V5 V6 GA-optimized AlkB 
specific activity (U/mg)

Experimental AlkB 
specific activity (U/mg)

No. of 
iterations

1st 1.92 27.41 7.38 10.27 1.250 0.73 338.61 314.68 128

2nd 1.56 27.40 7.38 12.35 1.331 0.63 355.86 351.32 161

3rd 1.36 27.34 7.41 12.31 1.327 0.70 365.46 336.54 126

4th 1.32 27.42 7.34 11.56 1.325 0.64 363.39 339.67 153

5th 1.46 27.46 7.42 12.32 1.192 0.70 345.12 331.45 142
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clearly indicated that there was significant increase in 
AlkB specific activity when it was cross-validated with 
experimental data, which reveals that the used fitness 
function generated the best fitness values for optimum 
AlkB specific activity. This could be possible due to sig-
nificant weights and biases value obtained after net-
work training and selection of appropriate values of GA 
parameters (i.e., population size, crossover probability, 
mutation probability and the number of generations, 
etc.). Similar results have been published by Badhwar 
et al. (2020) and Prakasham et al. (2011).

The 77.4% significant improvement from FFNN-GA opti-
mization reveals that GA has efficiently used its reproduc-
tion function, crossover function and mutation functions 
to generate the good strings, new populations whereas 
iteration process might have able to find out the best global 
optimal solutions. The GA might have identified slight 
changes in inoculum size, incubation time, pH of the media 
and metal ion concentration as key regulators and gener-
ated the several combinations of these critical parameters 
to provide the highest yield. Specially, FeSO4 has higher 
impact on enhanced AlkB yield due to its dependency on 
iron for catalytic activity.

An interactive contour plot generated with the help of 
GA outputs (Fig. 6) indicated that the best optimum out-
put could be achieved by generating an infinite number 

of combinations of two input variables keeping other 
variables at their optimized level. A similar study has also 
been reported by Salim et al. (2019). Enhanced AlkB spe-
cific activity with an increase in hexadecane concentra-
tion and incubation temperature (Fig.  6a) suggested that 
uptake of hexadecane was easier at higher temperatures 
which induced the higher production of AlkB. On the 
other hand, the effects of hexadecane and inoculum size 
on AlkB specific activity (Fig. 6b) suggested that up to 1 ml 
of inoculum size was sufficient for the utilization of 1–3% 
of hexadecane, which might be due to a higher percentage 
of cell viability in a spore suspension. Figure 6c indicated 
high sensitivity of AlkB towards variation in pH-tempera-
ture combo, hence, a slight change in pH from 7 reduced 
AlkB activity, which might be due to a change in the ionic 
state of the active site of AlkB. Figure 6d indicates that AlkB 
production started after 8 days of incubation. This might be 
due to the availability of simple carbon source (glucose) in 
the media which supported its initial growth and only after 
the consumption of glucose present in the media, hexade-
cane utilization might have started, which resulted in the 
production of AlkB. An increase in hexadecane concentra-
tion decreased AlkB activity (Fig. 6e), which could be due 
to its toxicity and hydrophobicity. Combination of inocu-
lum size and temperature (Fig. 6f) had shown less impact 
on the AlkB specific activity beyond inoculum size of 1.5, 
whereas; incubation time and pH (Fig. 6g) together influ-
enced AlkB specific activity much more. Figure  6h sug-
gested that higher hexadecane concentration reduced the 
AlkB activity due to excess substrate accumulation of sub-
strate toxicity.

An overall observation from contour plots indicates that 
specific activity of AlkB was influenced by hexadecane con-
centration in combination with some other parameters in 
the following orders: metal ion concentration > incubation 
time > inoculum size > incubation temperature (Fig. 6). The 
wide variation in enzyme yield shown in Table 2 (i.e. mini-
mum 39.44 U/mg for 56th set and maximum 198.94 U/mg) 
emphasizes the significance of the machine learning-based 
optimization approach for the cost-effective production of 
membrane-bound enzymes. A similar data (i.e., minimum 
71.33 U/ml, maximum 218.28 U/ml), has been reported 
by Sathish and Prakasham (2010). Specific activity of AlkB 
was improved by 77.4% (i.e. from 198.94 to 351.32 U/mg) 
when FFNN output enzyme production data was fur-
ther optimized using GA. Sathish and Prakasham (2010) 

Fig. 5  Parameters obtained from GA optimization, shows the fittest 
value of AlkB specific activity at 161th iterations

Fig. 6  Interactions of fermentation parameters and their effect on AlkB specific activity. a Hexadecane vs temperature, b hexadecane vs inoculum 
size, c pH vs temperature, d inoculum size vs incubation time, e hexadecane vs FeSO4 concentration, f inoculum size vs temperature, g Incubation 
time vs pH, h hexadecane vs incubation time (In above plots, only two variable factors have been indicated on x and y-axis and remaining factors 
were maintained at optimum levels achieved from 2nd run of GA optimization, which are as follows: hexadecane: 1.556%, Temperature: 27.40 °C, 
pH: 7.38, Incubation time: 11.56 days, Inoculum size: 1.33 ml per 100 ml media (v/v), FeSO4 conc.: 0.63 mM)

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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also reported a 47% improvement in the yield of glutami-
nase after ANN output enzyme production data was fur-
ther optimized using GA. An overall 3.5-fold increase in 
AlkB specific activity (from 100 U/mg under preliminary 
un-optimized conditions to 351.32 U/mg after FFNN-GA 
optimization) has been achieved using FFNN-GA hybrid 
method in this study. Subba Rao et  al. (2008) had also 
reported more than 2.5-fold improvement in alkaline pro-
tease yield using FFNN–GA hybrid methodology. From 
the statistical observation, the R-  Value of 0.987 of FFNN 
training exhibited a better correlation between predicted 
and experimental data with ‘6-12-1’ FFNN topology. The 
overall smallest values of mean absolute percentage error 
(MAPE) and root mean square error (RMSE) of 0.053 and 
6.801, respectively suggested that chosen network had 
good approximation and generalization aspects for the 
optimization of AlkB yield.

From the overall findings in this study, it can be con-
cluded that OVAT strategy alone is not capable to find 
out optimal conditions for enhancing AlkB yield due to 
the requirement of a large number of experiments and 
lack of determination of interactions among various 
factors. FFNN-GA coupled optimization approach sig-
nificantly enhanced the AlkB specific activity. The FFNN 
model ‘6-12-1’ showed the best prediction accuracy after 
training with the Levenberg–Marquardt (trainlm) algo-
rithm. These findings signify the utility of the FFNN-GA 
approach for the enhanced production of Alkane hydrox-
ylase from Penicillium chrysogenum SNP5 and optimiza-
tion of other bioprocesses in the enzyme industry.
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