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Spontaneous quorum‑sensing hierarchy 
reprogramming in Pseudomonas aeruginosa 
laboratory strain PAO1
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Abstract 

Pseudomonas aeruginosa strain PAO1 has been commonly used in the laboratory, with frequent genome variations 
reported. Quorum sensing (QS), a cell–cell communication system, plays important role in controlling a variety of 
virulence factors. However, the evolution and adaptability of QS in those laboratory strains are still poorly understood. 
Here we used the QS reporter and whole-genome sequencing (WGS) to systematically investigate the QS pheno-
types and corresponding genetic basis in collected laboratory PAO1 strains. We found that the PAO1-z strain has an 
inactive LasR protein, while bearing an active Rhl QS system and exhibiting QS-controlled protease-positive activity. 
Our study revealed that an 18-bp insertion in mexT gene gave rise to the active QS system in the PAO1-z strain. This 
MexT inactivation restored the QS activity caused by the inactive LasR, showing elevated production of pyocyanin, 
cyanide and elastase. Our results implied the evolutionary trajectory for the PAO1-z strain, with the evulutionary order 
from the first Las QS inactivation to the final Rhl QS activation. Our findings point out that QS homeostasis occurs in 
the laboratory P. aeruginosa strain, offering a potential platform for the QS study in clinical isolates.
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Introduction
Pseudomonas aeruginosa is an opportunistic patho-
gen that causes several severe acute and chronic human 
infections, including the infections in cystic fibrosis (CF) 
patients with compromised immune systems (Gellatly 
and Hancock 2013; Klockgether and Tümmler 2017). A 
variety of P. aeruginosa virulence factors are regulated by 
the quorum-sensing (QS) system (Papenfort and Bassler 
2016). QS is a bacterial cell–cell communication system 
that controls the expressions of hundreds of genes in P. 
aeruginosa. Two acyl-homoserine lactone (AHL) QS 
systems, LasI-LasR and RhlI-RhlR, were identified in 
P. aeruginosa. LasI and RhlI catalyze the productions of 

diffusible QS signal N-3-oxododecanoyl homoserine lac-
tone (3OC12-HSL) and butyryl-HSL (C4-HSL), respec-
tively. 3OC12-HSL-bound LasR activates the expression 
of downstream genes. C4-HSL-bound RhlR acts analo-
gously to 3OC12-HSL-bound LasR. The activation of Rhl 
QS system requires the induction of the Las QS system. 
These two AHL QS systems also interact with a Pseu-
domonas Quinolone Signal (PQS) system. In general, the 
LasI-LasR is atop the QS hierarchy and deletion of LasI 
or LasR results in the inactivation of the whole QS sys-
tem (Lee and Zhang 2015).

MexT is a transcriptional regulator of the LysR family 
and  positively controls the MexEF-OprN efflux pump 
(Köhler et  al. 1999; Maddocks and Oyston 2008). This 
efflux pump is related to the increased resistance of 
chloramphenicol, trimethoprim and fluoroquinolones 
(Köhler et al. 1997a, b). As a global transcriptional regu-
lator, in addition to regulation of the mexEF-oprN operon 
and a neighboring gene mexS (Köhler et al. 1999), MexT 
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also regulates the expressions of more than 40 genes 
(Tian et al. 2009a). Because MexEF-OprN pump exports 
the PQS precursor HHQ (Lamarche and Déziel 2011), 
MexT regulates many QS-controlled phenotypes. Inacti-
vation of MexEF in the background of the LasR mutant 
also elevates the QS-controlled pyocyanide production 
(Kostylev et al. 2019). On the other hand, overexpression 
of MexT leads to the attenuated QS-controlled pheno-
types, such as the production of pyocynin, C4-HSL, cya-
nide, elastase and rhamnolipids (Köhler et al. 2001; Tian 
et al. 2009b).

Mutations in the mexT gene have been reported in clin-
ical isolates from CF patients (Smith et  al. 2006), intes-
tinal tissues (Gilbert et  al. 2012), and commonly used 
laboratory PAO1 strains (Luong et al. 2014; Maseda et al. 
2000). Inactivation of MexT in those strains exhibited 
increased pyocyanin production, high swarming motil-
ity, reduced chloramphenicol resistance and increased 
destructive capability on tissues (Gilbert et  al. 2012; 
Luong et  al. 2014). Mutations in  mexT gene were  also 
found in the PAO1 LasR mutant grown in protein-based 
broth (Oshri et  al. 2018), and supplementation of syn-
thetic C4-HSL or co-culture with clinical isolates secret-
ing C4-HSL can greatly accelerate this genetic adaptation 
(Kostylev et al. 2019).

The P. aeruginosa strain PAO1, obtained from a wound 
in Melbourne, Australia (Holloway and Morgan 1986; 
Holloway 1955), serves as a reference strain commonly 
used for Pseudomonas research in laboratories world-
wide. Laboratory-propagated and -maintained PAO1 
strains have been found to contain genome variations 
(Chandler et  al. 2019; Klockgether et  al. 2010), while 
QS characteristics in different laboratory PAO1 strains 
remain illustrative. To address this concern, we sys-
tematically surveyed QS profiles in three PAO1 strains 
derived from different sources. We used skim milk plate 
and QS reporter assays to screen QS phenotypes in labo-
ratory PAO1 strains. Our study found that the PAO1-z 
strain showed reduced QS activity when compared to 
the other two laboratory PAO1 strains. Further genetic 
analysis revealed that the lasR gene in the PAO1-z strain 
was disrupted by a 3-bp insertion, resulting in a nonfunc-
tional LasR protein and an impaired Las QS system. The 
WGS analysis further revealed the mexT gene, which 
encodes a global transcriptional regulator, has an 18-bp 
deletion mutation. Although the PAO1-z strain contains 
a nonfunctional LasR, the Rhl QS system in PAO1-z is 
activated by the MexT inactivation, producing elevated 
Rhl-regulated products such as pyocyanin, cyanide 
and elastase. Our findings revealed that QS adaptation 
occured in the laboratory PAO1 strain, which probably 
underwent a QS evolution scenario that an impaired Las 

QS system was followed by the activation of the Rhl QS 
system.

Materials and methods
Bacterial strains and growth
Pseudomonas aeruginosa PAO1-u strain was obtained 
from E. Peter Greenberg (University of Washington, 
USA), PAO1-m strain from Matthew Parsek (University 
of Washington, USA), and PAO1-z strain was collected 
from Zhang Lianhui (SCAU, China). The PAO1 strains 
and the mutant derivatives were grown in Luria Bertani 
(LB) broth containing 10 mg/ml tryptone, 5 mg/ml yeast 
extract, 10 mg/ml NaCl at 37 °C. Unless otherwise speci-
fied, P. aeruginosa strains were cultured in 14-mm FAL-
CON tubes (Corning, USA) containing 3  mL medium, 
with shaking (225 RPM) at 37  °C. Escherichia coli was 
grown in LB broth at 37 °C. The bacterial strains used in 
this study are listed in Additional file 1: Table S3.

Construction of P. aeruginosa mutants
Either point mutation or full gene knocking out was 
based on the homologous recombination exchange 
approach as described previously (Rietsch et  al. 2005). 
Briefly, about 500 ~ 1000  bp of DNA flanking the tar-
geted single nucleotide substitution or full length of gene 
of interest were PCR-amplified and cloned into pEXG-2 
vector (Gentamycin resistance, Gm) (Rietsch et al. 2005; 
Stover et al. 2000) with the Vazyme ClonExpress II One 
Step Cloning kit (Vazyme Biotech, Nanjing, China), gen-
erating pEXG-flanking constructs. The primers used 
for cloning are listed in Additional file  1: Table  S2. The 
pEXG-flanking construct was mobilized into P. aer-
uginosa strain by triparental mating with the help of E. 
coli PRK2013 strain (Kanamycin resistance, Km). Point 
mutation or full-length gene deletion mutants were first 
selected on Pseudomonas Isolation agar (PIA) containing 
Gm100 and further selected on LB agar containing 10% 
sucrose. All mutants were confirmed by PCR amplifica-
tion and subsequent DNA Sanger sequencing.

Constitutive expression of an extra copy of mexT
Open reading frame sequences of gene mexT were fused 
with 265 bp native promoter region sequence and cloned 
into pUC18T-mini-Tn7T-Gm (NCBI accession num-
ber: AY599232) (Choi and Schweizer 2006a), generat-
ing miniTn7-mexT. The miniTn7-mexT was integrated 
into the neutral site of genome of PAO1 strains together 
with the transformation of helper plasmid pTNS2 (NCBI 
accession number: AY884833). Integration event was 
confirmed by PCR amplification and DNA sequencing. 
The excision of Gm resistance was performed with pFLP2 
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plasmid (NCBI accession number: AF048702) (Choi and 
Schweizer 2006b) and selected on LB agar containing 5% 
sucrose.

QS reporter assay
PlasI-GFP and PrhlA-GFP (Feltner et  al. 2016) were 
used to quantify the LasR- and RhlR-responsive activi-
ties, respectively. PlasI-GFP and PrhlA-GFP were 
mobilized into PAO1 strains and selected on LB agar 
plate (Gm). PAO1 strains bearing QS reporter plasmids 
were grown in LB broth containing 50  mg/mL genta-
mycin for 12 h. Cell pellets were washed with PBS and 
subjected to microplate reader (Synergy H1MF, BioTek 
Instruments, USA) for GFP measurement.

Skim milk assay
Total proteolytic activity of P. aeruginosa strains was 
evaluated through the  skim milk assay, in which the 
tested strains form a zone of clearing on skim milk agar 
plate. Individual colonies were spotted on the skim 
milk agar plates (25% LB, 4% skim milk, 1.5% agar). 
The protease-catalyzed zones were photographed after 
incubation at 37 °C for 18 h.

Pyocyanin production
Overnight cultures of P. aeruginosa grown in LB broth 
were diluted into 4  mL LP medium (20  g/L Gelation 
peptone, 1.4 g/L MgCl2, 10 g/L K2SO4, 10 mM Glycerol, 
pH 7.2) to reach a starting OD600≈0.02 and spotted on 
to the LP agar plate for visualization.

Cyanide measurement
Cells grown in LB broth overnight were diluted to 
OD600≈0.1 and spotted on to the peptone agar plate 
(2% peptone in 1.5% agar). The plates were covered 
with filter paper soaking with 5 mg/mL Copper (II) eth-
ylacetoacetate and 5  mg/mL 4,4’-methylenebis- (N,N-
dimethylaniline) and incubated at 37 °C for 18 h.

Elastase production assay
P. aeruginosa strains grown in LB broth overnight 
were diluted to OD600≈0.02 in 2  mL LB broth for 
shaking at 37  °C for 8  h. The cells were spin down at 
16,000g × 2  min and 500  μl supernatants were trans-
ferred to a tube containing the same amount of ECR 
buffer (0.1  M Tris–Cl, 1  mM Cacl2, 5  mg/mL Congo 
red, pH 7.2) at 37  °C for 2 h. Reaction was stopped by 
adding 100  μl EDTA (0.12  nM). Cells were pelleted at 
5000g × 5  min and supernatants were measured at 
OD495 nm.

Quantitative real‑time PCR (qRT‑PCR)
Total RNA of PAO1 strains and derivatives were reverse 
transcribed using the HiScript II 1st Strand cDNA Syn-
thesis Kit (Vazyme Biotech, Nanjing, China) following 
the manufacturer’s instructions. The obtained cDNA 
was used for qRT-PCR. Quantification reactions con-
taining SYBR qPCR Master Mix (Vazyme Biotech, Nan-
jing China) were prepared in 96-well plates and run in 
StepOnePlus Real-Time PCR System (Applied Biosys-
tems, USA) as recommended. Primers used for qRT-
PCR are listed in Table S2. The expression of targets of 
interest was normalized to the expression level of the 
proC gene. Reactions were performed in triplicate.

Whole‑genome sequencing by Illumina HiSeq
1  μg of microbial genomic DNA was sonicated to an 
average size of ~ 350  bp by Covaris-S220 ultrasonicator 
(Covaris, Woburn, MA, USA). Illumina DNA fragment 
library preparation was performed following the man-
ual of Next-Generation Sequencing DNA library prepa-
ration kit (Novagen). Briefly, the fragmentated DNA 
products were end repair and ligated with an adapter. 
Adapter-ligated products were purified using AMPure 
XP beads (Agencourt-Berkman Coulter, USA) and 
enriched through PCR amplification using the custom 
adapter-specific primers. The obtained unbiased short 
read library was further cleaned up with AMPure XP 
beads. Pair end Illumina HiSeq PE150 sequencing was 
performed with an Illumina Novaseq 6000 sequencing 
system.

Analysis of Illumina HiSeq short reads
Raw short reads were subjected to quality control includ-
ing removing adapters using cutadapt (v1.16) by Nova-
gen (Novagen, China), yielding clean short reads. Clean 
short reads were mapped to the PAO1 reference genome 
(accession number NC_002516.2) with bwa (v0.7.15-
r1140). The mapped short reads were subjected to a 
genome-wide genetic variant calling using Samtools 
(v1.5) and Breakdancer (v1.4.5) software. The statistics of 
short read analysis is listed in Additional file 1: Table S1.

Used software
Following bioinformatics software were used in this 
study:

Cutadapt, version 1.16 (https://​github.​com/​marce​lm/​
cutad​apt/),
Bwa, version 0.7.15-r1140 (http://​bio-​bwa.​sourc​
eforge.​net) (Li and Durbin, 2009),
Samtools, version 1.5 (http://​samto​ols.​sourc​eforge.​
net) (Li et al. 2009),

https://github.com/marcelm/cutadapt/
https://github.com/marcelm/cutadapt/
http://bio-bwa.sourceforge.net
http://bio-bwa.sourceforge.net
http://samtools.sourceforge.net
http://samtools.sourceforge.net
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Breakdancer, version v1.4.5 (https://​github.​com/​
genome/​break​dancer) (Chen et al. 2009),
Perl, version v5.22.1. (https://​www.​perl.​org/),
FastQC, version fastqc_v0.11.5 (https://​www.​bioin​
forma​tics.​babra​ham.​ac.​uk/​proje​cts/​fastqc/),
Hisat2, version 2.1.0 (https://​daehw​ankim​lab.​github.​
io/​hisat​2/).​(Kim et al. 2015),
HTSeq, version 0.11.1 (https://​htseq.​readt​hedocs.​io/​
en/​relea​se_0.​11.1/​count.​html). (Anders et  al. 2015), 
and DESeq2, (Love et al. 2014).

Statistical analysis
Statistical analyses were performed using Excel and R 
software (http://​www.R-​proje​ct.​org/).

Results
QS‑related phenotypes in P. aeruginosa laboratory strains.
To investigate the QS characteristics in P. aeruginosa 
laboratory strains, we examined QS-related pheno-
types of PAO1 strains commonly used in different labs. 
We tested three laboratory PAO1 strains, designated as 
PAO1-m, PAO1-u and PAO1-z. They were maintained 
in LB nutrition-rich broth, in which PAO1 generally is 
thought not to be subjected to selection pressures. The 
skim milk plate assay was used to assess their protease 
activity, which is mainly controlled by the Las QS sys-
tem and partially by the Rhl QS system (Pearson et  al. 

1997). Although all of the strains showed protease-pos-
itive activity in the skim milk plate, PAO1-z displayed a 
smaller protease-catalyzed zoom than that in the PAO1-
m or the PAO1-u strain (Fig. 1A). This reduced proteo-
lytic activity of PAO1-z implied that its QS activity was 
compromised to some degree, presumably resulting from 
genetic mutations associated with QS-related genes.

We therefore sequenced the component genes of the 
Las and Rhl QS systems in the PAO1-z strain, and found 
that the lasR gene has a 3-bp insertion in the ligand-bind-
ing domain (LBD) (herin  referred to as LasR3 variant), 
resulting in a disrupted open reading frame (Fig.  1C). 
Furthermore, the Las QS reporter result revealed that 
the fluorescence level of PlasI-GFP in PAO1-z was as 
low as the PAO1-u-LasR mutant (Fig. 1B). Therefore, the 
LasR3 variant protein in PAO1-z was completely inactive. 
In addition, when the full-length of lasR3 was deleted 
from PAO1-z, the resulting PAO1-z-LasR3 mutant still 
remained the similar proteolytic activity as the parent 
PAO1-z strain (Fig.  1D), suggesting LasR-3 variant in 
PAO1-z does not contribute to either the active proteoly-
sis or the active QS system. Given that LasR is atop of the 
QS hierarchy (Lee and Zhang 2015), this finding raises 
the question how the production of QS-regulated pro-
tease was restored in the PAO1-z strain. Taken together, 
these findings show that different laboratory PAO1 
strains have developed distinct QS phenotypes resulting 
from respective genome innovations. The Las QS activity 
in the PAO1-z strain was functionally disrupted due to a 
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Fig. 1  QS activity profiles in P. aeruginosa laboratory strains. A Protease activity is shown in skim milk assay of three P. aeruginosa laboratory strains. 
An equal amount of bacteria were spotted on to the skim milk plate and photographed after 18 h of incubation. B The LasR-responsive activity in 
PAO1-u strain, PAO1-z strain and PAO1-u-LasR mutant. LasR-responsive activity was reflected by the fluorescence level of the PlasI-GFP reporter. The 
expression level of GFP in the tested strain was measured by the microplate reader and reported as relative fluorescence units (RFU). C Illustration of 
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3-bp insertion occuring in the lasR gene, and the retained 
QS-controlled proteolysis implies that the QS hierarchy 
was re-adapted in the PAO1-z strain.

Inactivating MexT is responsible for rewired QS 
phenotypes in PAO1‑z
To identify the genetic changes responsible for the 
altered QS phenotypes in PAO1-z, we performed the 
whole-genome short read re-sequencing (WGS) analy-
sis. Short reads of PAO1-z were mapped to the reference 
PAO1 genome (NCBI accession number: NC_002516.2). 
Relative to the PAO1-u genome, PAO1-z has only a few 
genomic differences, including single-nucleotide sub-
stitutions, insertions and deletions. They include a 3-bp 
insertion in the lasR gene, an 18-bp deletion in the mexT 
gene, three single-nucleotide substitutions occurring 
in the tsap gene, gtrS gene and the noncoding region, 
respectively (Table  1). These DNA elements bearing 
mutations are thus  the potential candidates responsible 
for the altered QS phenotypes in PAO1-z.

Because either overexpression or deletion of the mexT 
gene has been shown to substantially influence Rhl QS 
activity (Köhler et al. 2001; Tian et al. 2009b), we hypoth-
esized that the 18-bp-deleted mexT gene in PAO1-z may 
encode a nonfunctional protein. In the skim milk plate 
assay, a functional mexT copy from PAO1-u was trans-
ferred into PAO1-z, resulting in a protease-deficient 
phenotype in the recombinant strain (Fig. 2A). This com-
plementation result indicated the 18-bp-deleted  mexT 
gene in PAO1-z was functionally inactive. Furthermore, 
this copy of mexT gene from PAO1-z was mobilized into 
PAO1-u-LasR-MexT double mutant but did not affect 
the protease activity in the resultant strain (Additional 
file  1: Figure S1). All these results  indicated that the 
mexT gene in PAO1-z encodes a nonfunctional protein. 
Similar to the LasR-MexT mutant, PAO1-z also showed 
increased Rhl QS activity, as reflected by the PrhlA-GFP 
reporter (Fig.  2B) and elevated productions of pyocya-
nin pigment, cyanide and elastase when compared to 
the LasR mutant (Additional file 1: Figure S2). Shown by 
selected QS genes, the qRT-PCR analysis also confirmed 

Table 1  Identification of genome mutations in the PAO1-z strain

Whole-genome re-sequencing (WGS) was performed with the PAO1-z strain. Short reads were mapped to the reference PAO1 genome (NC_002516.2). Genome 
mutations were identified relative to the PAO1-u strain
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Fig. 2  Inactivating MexT responsible for the active Rhl QS phenotypes in PAO1-z. A Skim milk plate assay of indicated strains. The same amounts 
of bacteria were spotted onto the skim milk plate and photographed after 18 h incubation. B Detection of fluorescence of PrhlA-GFP reporter in 
indicated strains. The expression level of GFP in the tested strain was measured by the microplate reader and reported as relative fluorescence units 
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the elevated Rhl QS activity as well as the PQS QS activ-
ity in the PAO1-z strain (Additional file  1: Figure S3). 
Therefore, we concluded that PAO1-z has an inactive 
Las QS system, but the Rhl QS system is restored by the 
mexT mutation.

We did not further investigate the roles of the tsap 
gene and the gtrS gene for the QS adaptation in PAO1-
z. The single-nucleotide substitution in the tsap gene did 
not affect the coding amino acids (Table 1). Meanwhile, 
the gtrS genes encode a glucose transport sensor, which 
is less likely to be involved in the QS pathway regulation. 
We therefore reasoned that the lasR and mexT genes are 
most likely  responsible for the evolution of QS adapta-
tion in PAO1-z. Our study suggests that under certain 
laboratory conditions, the mutation that occurred in the 
lasR gene resulted in the inactivation of the LasR QS sys-
tem, followed by the adaptive mutation in the mexT gene 
leading to the activation of the Rhl QS system.

Discussion
In our study, the adaptive mutations in the lasR and the 
mexT gene, which are responsible for the changes of the 
QS hierarchy, were identified in a commonly used labo-
ratory  PAO1-z strain cultured in nutrition-rich condi-
tions. We assume that the lasR mutations inactivated 
QS first, followed by a secondary mexT mutation that 
reprogramed the QS hierarchy in the PAO1-z strain. It is 
very unlikely an opposite scenario of mutation occurred. 
P. aeruginosa has complex regulatory networks (Huang 
et  al. 2019; Lee and Zhang 2015) that allow this bacte-
rium to rearrange its QS hierarchy, and our findings dem-
onstrate that P. aeruginosa could utilize QS to efficiently 
adapt to environments. QS homeostasis has previously 
been observed in LasR mutant cells during the station-
ary phase or under  the starvation condition. In the late 
stationary phase, Rhl and PQS QS systems could achieve 
to  be self-active in the  LasR-null  mutant (Dekimpe and 
Deziel 2009; Diggle et al. 2003), while LasR mutant cul-
tured in protein-based broth could also emerge mexT 
mutations to activate the LasR-independent Rhl and 
PQS QS systems (Kostylev et al. 2019; Oshri et al. 2018). 
In comparison, our study found that the PAO1-z strain 
maintained in nutrient-rich broth also  underwent 
genome variations that resulted in QS hierarchy autoreg-
ulation. Future research will be needed to fully elucidate 
the specific condition that could induce the QS autoregu-
lation in the PAO1-z strain.

With adaption to the deteriorating environments in 
CF lungs, P. aeruginosa isolates in chronic infection 
appear evolutionary changes, resulting in a wide spec-
trum of colony variants that are hypermutable, nonmo-
tile, nonflagellated, liposaccharide-deficient, resistant 

to antibiotics, auxotrophic (Oliver et al. 2000; Winstan-
ley et al. 2016). Owing to high genetic and phenotypic 
diversities, genetic knowledge in clinical isolates is dif-
ficult to be translated into the understanding of the 
corresponding adapted phenotypes. In P. aeruginosa 
CF chronical infection isolates, mutations in the QS 
master regulator lasR gene were commonly identified 
(D’Argenio et al. 2007; Hoffman et al. 2009; Smith et al. 
2006). Although the lasR mutation usually yields a non-
functional protein causing the paralysis of the QS sys-
tem (Feltner et al. 2016), LasR-null isolates were capable 
of engaging in QS activity with producing QS-associ-
ated factors and QS signal molecules (Bjarnsholt et al. 
2010; Chen et  al. 2019; Cruz et  al. 2020; Feltner et  al. 
2016). Although the microevolution has been reported 
across laboratory PAO1 strains worldwide (Chandler 
et  al. 2019; Klockgether et  al. 2010), the frequency of 
mutation in laboratory PAO1 strains was rather lower 
than that in clinical isolates. This observation was sup-
ported in our WGS data with the identification of only 
a few adaptative mutations in the long-term laboratory-
maintained PAO1-z strain (Table  1). Meanwhile, our 
findings also  demonstrate that the laboratory-adapted 
strain experienced QS adaptation. Therefore, by exam-
ining the respective genotype–phenotype association, 
the laboratory PAO1 strain could serve as a useful plat-
form for studying Pseudomonas QS adaptation by sub-
jecting the bacterium to conditions similar to those 
found in clinical settings.

Our study found that  the laboratory strain PAO1-z 
underwent genome innovations that led to the altera-
tion of QS hierarchy. In such situation, the QS charac-
teristics of a laboratory PAO1 strain may probably have 
been masked to some extent. This will impact on and 
mislead the following QS-related researches if using the 
QS-altered PAO1 strains. Our findings suggest that as a 
first step toward a proper illustration of QS adaptabil-
ity in PAO1 strains, it is crucial to verify the potential 
effects derived from their genome variations.
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