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Abstract 

At present time, every nation is absolutely concern about increasing agricultural production and bioremediation of 
petroleum-contaminated soil. Hence, with this intention in the current study potent natural surfactants character-
ized as lipopeptides were evaluated for low-cost production by Bacillus subtilis SNW3, previously isolated from the 
Fimkessar oil field, Chakwal Pakistan. The significant results were obtained by using substrates in combination (white 
beans powder (6% w/v) + waste frying oil (1.5% w/v) and (0.1% w/v) urea) with lipopeptides yield of about 1.17 g/L 
contributing 99% reduction in cost required for medium preparation. To the best of our knowledge, no single report 
is presently describing lipopeptide production by Bacillus subtilis using white beans powder as a culture medium. 
Additionally, produced lipopeptides display great physicochemical properties of surface tension reduction value 
(SFT = 28.8 mN/m), significant oil displacement activity (ODA = 4.9 cm), excessive emulsification ability (E24 = 69.8%), 
and attains critical micelle concentration (CMC) value at 0.58 mg/mL. Furthermore, biosurfactants produced exhibit 
excellent stability over an extensive range of pH (1–11), salinity (1–8%), temperature (20–121°C), and even after auto-
claving. Subsequently, produced lipopeptides are proved suitable for bioremediation of crude oil (86%) and as potent 
plant growth-promoting agent that significantly (P < 0.05) increase seed germination and plant growth promotion of 
chili pepper, lettuce, tomato, and pea maximum at a concentration of (0.7 g/100 mL), showed as a potential agent for 
agriculture and bioremediation processes by lowering economic and environmental stress.
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Introduction
Environmental pollution due to petroleum products such 
as crude oil, diesel, and gasoline is of major ecological 
concern nowadays (Jimoh and Lin 2019). Major health 
problems in humans and animals are occurred due to 
the release of petroleum and its by-products in a terres-
trial and aquatic ecosystem because of having mutagenic, 
carcinogenic, and teratogenic effects (Yadav et al. 2016). 
Petroleum-derived pollutants result in the limitation of 
phosphorus, iron, and nitrogen availability in agricul-
tural soil (Nogueira et  al. 2011). In today’s challenging 
world enhanced agricultural productivity is the need of 
the hour to encounter human food demands. However, 
equally alarming is the damage of agricultural land by 
pollutants that needs bioremediation strategies. Hence, 
researchers must focus on remediation of all these issues. 
Biosurfactants are amphiphilic secondary metabolites 
that exhibit surface-active properties produced by bac-
teria, fungi, and yeast (Santos et al. 2016). Biosurfactant-
producing microorganisms enhance plant growth 
through improvement in plant immunity against organic 
contaminants in the environment. Furthermore, they 
are also efficient in alleviating stress responses in plants 
along with strengthening plant growth and develop-
ment (Almansoory et  al. 2019). The surfactin preferably 
and to the lower extent fengycin, lipopeptides are capa-
ble to provoke defense responses that generate signaling 
molecules for activation of induced systemic resistance 
(ISR) in plants (Ongena et  al. 2007). Other lipopeptides 
that are reported for induction of plant defense response 
includes iturin (Yamamoto et  al. 2015), mycosubtilin 

(Farace et al. 2015), bacillomycin D (Wu et al. 2018), and 
sessilin and orfamide (D’aes et al. 2014). One of the posi-
tive influences of the use of lipopeptides in agriculture 
is its biocompatibility with living organisms (Ławniczak 
et al. 2013). Hence, to minimize the initial dose of fertiliz-
ers by seed stimulation strategies and its equal distribu-
tion in the soil is made possible through biosurfactants 
(Krawczyńska et al. 2012). Many researchers verified that 
plant growth-promoting rhizobacteria (PGPR) positively 
enhance plant development after association with the 
hydrocarbon-degrading bacteria in the contaminated soil 
(Pawlik et  al. 2017). Different plant growth-promoting 
traits include phosphate solubilization, siderophore pro-
duction, hydrogen cyanide (HCN) production, indole 
acetic acid (IAA) production, and systemic resistance 
induction (Benaissa 2019). Hence, for employing bio-
surfactants in agriculture, bioremediation and its appli-
cation in other fields the reduction in cost needed for 
production are of absolute concern (Jimoh and Lin 
2019). Increase in awareness among public about the 
use of environment-friendly and sustainable green prod-
ucts demand new strategies development to cut down 
the production cost for replacement of toxic synthetic 
surfactants with biosurfactants (Shaban and Abd-Elaal 
2017). Biosurfactants with numerous useful applica-
tions provide growing interest in diverse industrial sec-
tors including food, medicine, cosmetics, and agriculture 
(Patil et  al. 2014). However, the production cost is still 
high that depends on the availability of raw materials and 
downstream processing for scaleup at the industrial level 
(Akbari et al. 2018). Raw materials used for biosurfactant 
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production accounts for about 50% of the final produc-
tion cost (Rufino et al. 2007). Better choice of raw mate-
rial is a way to cut down the budget and make the process 
economically feasible (Jimoh and Lin 2019; Mukherjee 
et  al. 2006). Unlike synthetic surfactants that are pro-
duced from petroleum feed stock, biosurfactants could 
be produced using waste materials like agriculture waste 
(wheat bran), brewery waste, and food waste by-products 
(potato peels and waste frying oil) that not only reduce 
cost but also helps in waste disposal in environment-
friendly manner (Moshtagh et al. 2018; Vea et al. 2018). 
In the present study, we used potato peels powder, waste 
frying oil, molasses, and white beans powder as a low-
cost substrate for biosurfactant production. Hence, with 
all the above intentions the current study was conducted 
to produce stable potent biosurfactants employing vari-
ous cost-effective renewable resources and to evaluate 
the potential of produced lipopeptides for detoxification 
and management of crude oil contaminated soil and to 
promote plant growth and development.

Materials and methods
Materials and chemicals
All chemicals used in the study werepurchased from 
Sigma-Aldrich (Merck KGaA, Darmstadt, Germany), 
and are of analytical grade. The standard surfactin (≥ 98% 
purity) used as a reference for lipopeptides characteriza-
tion in this study was obtained from Sigma-Aldrich. Fer-
tilizers (NPK; 20-10-10) used in the study were bought 
from Agro-chemicals, Fertilizers (TAK Agro Brand). 
Antibiotics used in the current study were purchased 
from Werrick Pharmaceuticals Pakistan. Crude oil used 
was collected from Pakistan petroleum limited.

Microorganism and culture conditions
In the current study, Bacillus subtilis SNW3 (Genbank 
Acc. No. JX534509.1), obtained from Microbiology 
Research Lab, Quaid-i-Azam University, Islamabad, was 
previously identified and isolated from contaminated 
soil of Fimkessar oil field, Chakwal, Pakistan (Malik and 
Ahmed 2012). This strain SNW3 also referred to as QVS1 
is deposited with the Belgian Coordinated Collections of 
Microorganisms BCCM/LMG, Ghent, Belgium, under 
Accession Number “LMG P-30406”. The bacterial sample 
was cultured on nutrient agar plates (Yeast extract 2.0; 
Beef extract 1.0; Peptone 5.0; Sodium chloride 5.0; Agar 
15 g/L) incubated for 24 h at 30°C to obtain separate pure 
colonies, stored for regular use at 4°C and sub-cultured 
before use. The strain was preserved at − 80°C in nutrient 
broth (Peptone, 5; Meat extract, 1; Yeast extract, 2.0 and 
sodium chloride g/L) supplemented with 30% glycerol.

Cost‑effective substrates for biosurfactant production
For low cost biosurfactant production various cost-effec-
tive substrates were evaluated that includes: potato peels 
powder (total carbohydrate 68.7%; starch 25%; protein 
18%; non-starch polysaccharide 30%; acid-soluble and 
acid-insoluble lignin 20% and nitrogen 1.3%) (Liang et al. 
2014), molasses (total sugars 62.3%, sucrose 48.8%, starch 
0.33% and ash 13.1%) (Palmonari et al. 2020), white beans 
powder (protein 15.62%; carbohydrates 60.47%; lipids 
2.13%; crude fibre 14.15%) (Alayande et al. 2012), waste 
frying oil (palmitic acid 15.86%; oleic acid 29.83%; stearic 
acid 4.87% and linoleic acid 28.85%) (Banani et al. 2015) 
and nitrogen sources: sodium nitrite, urea and ammo-
nium nitrate while, conventional media yeast extract 
(protein 62.5%; sugar 2.90 %; fat 0.10 %; ash 9.50 %) was 
used as control. Each carbon source listed above was 
designed to use individually, then selected substrates 
were used in different combinations to achieve an opti-
mized medium composition. Molasses used in current 
study was obtained from Chashma Sugar Mills Limited in 
Dera Ismail Khan (Pakistan). Potato peels and waste fry-
ing oil were obtained from café located at Quaid-i-Azam 
University Islamabad (Pakistan). Whereas white beans 
were obtained from National Agricultural Research 
Council (NARC) Islamabad Pakistan.

Cost-effective substrates were categorized through 
various methods: soluble total organic nitrogen analy-
sis through the Kjeldahl method (Toledo et  al. 2018), 
soluble total organic carbon with a TOC analyzer (Multi 
N/C 3100, Analytic Jena), and Dumas method for total 
organic carbon (TOC) and total organic nitrogen in the 
solid fraction by applying (LECO, TruSpec CHN) tool 
(Munera-Echeverri et al. 2020).

Inoculum
Bacillus subtilis SNW3, streaked and stored on nutrient 
agar plates at 4°C was used for inoculum preparation. 
A loop full of culture from a single isolated colony on 
plate added in 100 mL nutrient broth (Peptone, 5; Meat 
extract, 1; Yeast extract, 2.0 and sodium chloride, 5 g/L) 
incubated at 30°C for 48  h then seed culture from the 
nutrient broth was used as inoculum for all experiments.

Production optimization, extraction, and partial 
purification of biosurfactant
The strain Bacillus subtilis SNW3 was grown on con-
ventional yeast extract media (2% w/v) and mineral salt 
medium (MSM) as described by (Abouseoud et al. 2008; 
Rastogi et al. 2021) of given composition (g/L: KH2PO4, 
2.0; K2HPO4, 4.0; FeSO4·7H2O, 0.025; MgSO4·7H2O, 
1.0; KCl, 0.2; NaCl, 5.0; CaCl2·2H2O, 0.02; and trace ele-
ments solution with composition of MnSO4·4H2O, 1.78; 
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ZnSO4·7H2O, 2.32; CuSO4·5H2O, 1.0; H3BO3, 0.56; KI, 
0.66 and NH4MoO4·2H2O, 0.39). Different environmen-
tal process parameters significant for biosurfactant pro-
duction were evaluated using above mentioned media at 
various range of temperature (15, 30, 37 and 50°C), pH 
(2, 4, 6, 8, 10, 12), agitation speed (0, 150 and 250 rpm) 
and inoculum size (0.5, 1, 1.5, 2 and 2.5). Initially, three 
nitrogen sources (urea, sodium nitrate, and ammo-
nium nitrate) and four cost-effective substrates (white 
beans powder, potato peels powder, waste frying oil, 
and molasses) were tested separately. After that for dif-
ferent combinations, the selected nitrogen source and 
cost-effective substrates added with MSM were used in 
various combined media compositions. Optimization of 
substrate and culture conditions are given in (Table  1). 
Yeast extract as the most preferable substrate for biosur-
factant production was used as control media (Qazi et al. 
2013). The designed experiments for substrate evaluation 
were run with 100 mL media in 250 mL Erlenmeyer flask 
with pH adjusted to 7.0 ± 0.2 and kept in a shaker for 96 h 
of incubation at 30°C and 150  rpm. The cell-free super-
natant obtained after centrifugation at 12,000  rpm was 
acidified up to pH 2.0 with 1 M hydrochloric acid (HCL) 
and kept overnight at 4 °C. For bacterial biomass produc-
tion, the collected pallet was washed with saline solu-
tion (0.9% w/v NaCl), oven-dried at 100°C, and weighted 
(Guerfali et al. 2020).

Dry weight of lipopeptides
For crude biosurfactants, pelleted precipitates were 
extracted with chloroform/methanol (2:1) and concen-
trated by rotary evaporation (Marchut-Mikolajczyk et  al. 
2018). After that concentrate was poured into a pre-
weighted sterile beaker. The crude lipopeptides were oven-
dried at 60  °C for 24 h. Plates were weighted after drying 
(Anandaraj and Thivakaran 2010). The following formula 
was used to calculate the dry weight of crude lipopeptide 
extract produced by Bacillus subtilis SNW3 under opti-
mized substrate and culture conditions. Dry weight of 

lipopeptide produced = (Weight of plate containing dried 
lipopeptide − Empty plate weight).

Assessment of biosurfactant production
For quantitative analysis of biosurfactant production, 
various assays were used that include surface tension 
measurement (SFT), oil displacement assay (ODA), and 
emulsification index (E24). The sample used for analysis 
was in the form of cell-free supernatant (CFS).

Oil displacement activity (ODA)
For estimation of biosurfactant production oil displace-
ment activity (ODA) was performed according to the 
method of Yalçın et  al. (2018). Briefly, 20  µL of crude oil 
was add on the surface of 40 mL distilled water in the petri 
dish. The cell-free supernatant (CFS) of 10 µL was placed 
gently on a uniform crude oil layer formed on distilled 
water. Oil layer was displaced, and clear zone diameter was 
measured in centimetre (cm). Production medium without 
inoculum was used as negative control. Clear zone forma-
tion indicates biosurfactant presence in CFS.

Emulsification index (E24)
Emulsification index (E24%) was used to estimate the emul-
sifying capacity of the biosurfactant, performed through 
protocol of Ferhat et al. (2011) with minor modifications. 
In short, kerosene oil (2 mL) and an equal volume of cell-
free supernatants were added in the test tube and mixed 
for 2 min on the vertex mixer. After that, these test tubes 
were kept undisturbed for 24 h at room temperature. The 
percent emulsification was measured using given formula 
where heights were calculated in centimetres (cm).

Surface tension (SFT) measurement
For quantitative analysis of biosurfactant produced by 
Bacillus subtilis SNW3 surface tension (SFT) of the 
cell-free supernatant was measured in mN/m by using 

E24(%) =
Height of the emulsion(cm)

Total height of the solution(cm)
× 100.

Table 1  Optimization of low-cost substrate and culture conditions for lipopeptide production by Bacillus subtilis SNW3

Factors Ranges

Temperature (°C) 15, 30, 37 and 50

pH 2, 4, 6, 8, 10, 12

Agitation speed (rpm) 0, 150, 250

Inoculum size (%, w/v) 0.5, 1, 1.5, 2, 2.5

Nitrogen source (0.1%, w/v) Urea, sodium nitrate, ammonium nitrate

Carbon source (conc. 2%, w/v) White beans powder, potato peels powder, 
molasses, waste frying oil, yeast extract

Carbon and nitrogen source ratio (W.B.P + W.F.O + U) w/v 11 + 0.5 + 0.1, 8 + 1 + 0.1, 6 + 1.5 + 0.1, 3 + 2 + 0.1
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KRUSS K20 digital Tensiometer (Kruss GmbH, Ham-
burg, Germany). SFT measurement was performed at 
room temperature by Wilhelmy plate through accord-
ing to the protocol given by the manufacturer. Cell-free 
supernatant of 25 to 30 mL was put on the tensiometer 
platform in a glass cup. Wilhelmy plate was sterilized 
before use, adjusted on the tensiometer, submerged in the 
broth followed by surface tension measurement (Novikov 
et al. 2017).

Structural characterization of lipopeptide by thin‑layer 
chromatography (TLC) and Fourier transform infrared 
spectroscopy (FTIR)
For thin-layer chromatography (TLC) and Fourier trans-
form infrared spectroscopy (FTIR) analysis, extracted 
form of crude biosurfactant was used while surfactin a 
class of lipopeptide (from sigma) was taken as standard 
for initial characterization. Crude biosurfactant compo-
nents were separated on Silica coated aluminum plates, 
silica gel 60 F254, MERCK Germany using chloroform: 
methanol: acetic acid (85:10:5, v/v) visualized under the 
wavelength of 254 and 365  nm to find retention fac-
tor (Rf ) (Joy et  al. 2017). For determination of chemi-
cal nature of bonds and, functional groups present in 
the crude form of biosurfactant produced FTIR analysis 
was performed. 10 mg of crude biosurfactant was loaded 
and the spectrum was observed at the range of 4500–
450  cm−1 using Tensor 27 (Bruker) FTIR spectropho-
tometer, equipped with ZnSe ATR (Marchut-Mikołajczyk 
et al. 2019).

Determination of critical micelles concentration (CMC) 
and critical micelle dilution (CMD) of lipopeptides
The CMC of the produced biosurfactant was analyzed 
through change in surface tension reduction values with 
varying concentrations of 0.06 to 1.24  mg/mL prepared 
in demineralized water (Datta et  al. 2018). For critical 
micelle dilution cell, free supernatant was diluted10-folds 
up to three levels (i.e. 10×, 100×, and 1000×) named as 
CMD−1, CMD−2, and CMD−3, respectively. Surface ten-
sion reduction value was analyzed by Wilhelmy plate 
method using KRUSS K20 digital Tensiometer (Kruss 
GmbH, Hamburg, Germany), performed at room tem-
perature (Campos et al. 2019).

Lipopeptides stability studies
To elucidate the thermal stability of lipopeptide, the-
standard solutions of crude biosurfactant were prepared 
at a concentration of 600 mg/L and incubated at different 
temperatures (20–121 °C) for 1 h. Furthermore, a stability 
test of the produced lipopeptide at saline conditions was 
performed. Different concentrations of sodium chloride 
NaCl (1–10%) were added to the biosurfactant solutions 

and incubated at 30  °C for 1  h. To determine pH effect 
on lipopeptide activity different buffer solutions were 
prepared and added to the biosurfactant standard solu-
tion, adjusted to pH 1–5 using citrate–phosphate buffer, 
pH 7 using phosphate buffer, and pH 9–11 using carbon-
ate-bicarbonate buffer solutions, incubated for 30  min. 
The stability of the produced lipopeptide was checked 
through surface tension reduction value of each treated 
sample (Goswami and Deka 2019).

Functional characterization of the lipopeptides
Lipopeptide screening for antimicrobial activity
Lipopeptide for its antimicrobial potential was assessed 
through well diffusion assay as mentioned before Singh 
et  al. (2014). Mueller–Hinton agar plates were prepared 
to contain Escherichia coli ATCC 25922 and Salmonella 
typhi ATCC 14028. The crude lipopeptide (10  mg/mL), 
ciprofloxacin and clarithromycin (1 mg/mL), and biosur-
factant in addition with antibiotics (5:0.5  mg/mL) were 
poured at a concentration of 100 µL and kept at 37°C for 
24 h of incubation. To determine the bacterial sensitivity 
to lipopeptide, the diameter of inhibition zone (mm) was 
measured according to Clinical Laboratory Standards 
Institute (Wayne 2002). To investigate the additive effect 
of lipopeptide with antibiotics any increase in the diam-
eter of the inhibition zone was measured as compared to 
antibiotics. Antibiotics without biosurfactants were used 
as a positive control (Ekprasert et al. 2020).

Exploration of lipopeptides for seeds germination and plant 
growth
The seeds of tomato (Solanum Lycopersicum), pea (Pisum 
sativum), chili pepper (Capsicum annuum), and lettuce 
(Lactuca sativa) were collected from National Agri-
cultural Research Centre (NARC) Islamabad, Pakistan. 
Obtained seeds were surface sterilized with 10% Na–
hypochlorite for 20  min and then washed with sterile 
distilled water before use. The crude lipopeptide extract 
produced with cost-effective optimized media was used 
in this assay. The seed germination experiment was con-
ducted in a petri plate containing 40 seeds positioned in 
filter paper and cotton soaked with four different concen-
trations (0.1, 0.3, 0.5, and 0.7  g/100  mL) of crude lipo-
peptide solution. Distilled water100% v/v was used as a 
control. These plates were kept in yellow light at 25 °C for 
7 days after that relative seed germination (G, %): [No. of 
seeds germinated (treatment)/No. of seeds germinated 
(control) × 100] was calculated. Following the germina-
tion test seeds treated with lipopeptide solution were 
transferred in pots (seeds without pre-treatment with 
biosurfactant were used as control) and kept in a green-
house with temperature maintained between 20 and 
22  °C. Furthermore, for plant growth stimulation crude 
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lipopeptide solution was added in pots at a concentra-
tion (0.1, 0.3, 0.5, and 0.7 g/100 mL) dissolved in distilled 
water thrice with 10  days interval while in control pots 
pure water was added. The emergence of plant seedlings 
was tested and checked for the morphological character-
istic of plants like shoot length (mm), root length (mm), 
and dry weight (g) of plants after 40  days (Huang et  al. 
2017).

Bioremediation assay in shake flask fermentation
The biodegradation efficiency of crude oil by Bacillus 
subtilis SNW3 was analyzed as illustrated by Varjani and 
Upasani (2016) with minor changes. An aliquot of 2 mL 
pre cultured Bacillus subtilis SNW3 was transferred into 
250  mL of Erlenmeyer flask containing 100  mL mineral 
salt media and different concentrations 0.5, 1, 1.5, and 
2% (v/v) of crude oil. For monitoring of abiotic loss of the 
crude oil, an uninoculated media was used as control. 
All these flasks were incubated for 21  days at 200  rpm 
and 35C. The bacterial growth in crude oil was detected 
through measurement of the absorbance at (OD600 nm) 
through spectrophotometer while SFT was measured by 
tensiometer. To estimate the residual crude oil in media, 
crude oil was extracted with hexane, left for evapora-
tion in a pre-weight clean beaker. For quantification of 
remaining crude oil after degradation gravimetric analy-
sis was performed at different time intervals by following 
the formula proposed by Patowary et al. (2017).

Bioremediation of crude oil in the soil through various 
design treatments
In this assay bioremediation of crude oil contaminated 
soil was monitored by collecting garden soil from Quaid-
i-Azam University Islamabad. Biosurfactant suitability 

Hydrocarbon degradation % = Amount of crude oil degraded/Amount of crude oil added in the media×
100.

for removing hydrophobic pollutants from soil was ana-
lyzed by collecting 5–10 cm deep topsoil while following 
the protocol of Okop et  al. (2012) and transported in a 
clean container to the Microbiology laboratory of Quaid-
i-Azam University Islamabad Pakistan. The soil col-
lected was air dried and sieved with a 2 mm sieve after 
that 5% of crude oil was sprayed on the soil to pollute soil 
homogenically. The polluted soil was left undisturbed for 
5 days and then divided into 200 g of equal parts and dis-
pensed in pots. These pots were left undisturbed in the 
open air for a week. Then for conducting bioremediation 
experiments various designed treatments were estab-
lished added twice throughout the remediation period: 
(T0) addition of distilled water as control, (T1) cell-free 
supernatant obtained after 96 h of incubation with maxi-
mum biosurfactant produced by using optimized cost-
effective substrate media, (T2) addition of active culture 
of Bacillus subtilis SNW3 (2% inoculum size) cultured in 
nutrient broth kept in shaker incubator at 30 °C, 150 rpm 
for 24  h of incubation, (T3) effect of two additives was 
assessed for bioremediation i.e. T1 + T2, (T4) addition 
of tween 80 (T5) addition of fertilizer (NPK; 20-10-10) to 
analyse the effect of fertilizer on bioremediation in com-
parison to the produced lipopeptide (Pelletier et al. 2004) 
and (T6) an additional control containing autoclaved soil 
and 5% crude oil (w/v) was used to examine the crude 
oil degradation in the soil. Detailed information about 
all the above treatments is shown in (Table  2). The soil 

content of each pot was tilled twice a week for aeration 
with moisture maintenance at 60  % and temperature of 
28–30°C, providing all those conditions that are appro-
priate for crude oil-degrading microbes present in the 
soil (Agamuthu et al. 2013). After that soil samples of 10 g 

Table 2  Different design treatments for removal of crude oil from contaminated soil

Treatments Soil Biological treatment Chemical compounds Crude oil 
concentration 
(%)

Control (T0) 200 g 5

Treatment 1 (T1) 200 g Cell-free supernatant containing 
lipopeptide (200 mL)

5

Treatment 2 (T2) 200 g Active culture of Bacillus subtilis 
SNW3 (100 mL)

5

Treatment 3 (T3) 200 g T1 (100 mL) + T2 (100 mL) 5

Treatment 4 (T4) 200 g 10 mg/kg of tween 80 5

Treatment 5 (T5) 200 g 0.8 g/kg of fertilizer 5

Treatment 6 (T6) 200 g (autoclaved) 5
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were collected from different areas of the plastic pots at 
the 30, 60, 90th day and were gravimetrically determined 
using the formula given by Ganesh and Lin (2009).

Statistical analysis
The obtained results were analyzed statistically with the 
use of STATISTICA software, one-way ANOVA (version 
8.1). The difference between obtained results was ana-
lyzed by using Tukey’s test to find individual and control 
mean ± standard deviation. Significance value was set at 
p = 0.05 and p-values ≤ 0.05 were considered significant.

Results
Substrate screening and optimization studies 
for lipopeptide production
Potato peels powder, molasses, white beans powder, 
and waste frying oil were evaluated as cheap media for 
lipopeptide production by Bacillus subtilis SNW3. Opti-
mized results for culture conditions with 2% yeast extract 
media showed 30 °C as optimum for maximum lipopep-
tide production with an ODA value of 1.26  cm While 
other optimized cultural conditions were with 1% inoc-
ulum size, 150  rpm, and pH of 6 (Additional file  1: Fig. 
S1). At the end of the fermentation process, the obtained 
ODA values were 1.3, 2.4, 0.9, and 1.8  cm for potato 

peels powder, white beans powder, sugar cane molas-
ses, and waste frying oil media respectively with 2% w/v 
concentration. Additionally, the surface tension reduc-
tion values observed for all four biosurfactant solutions 
were reduced from 72 mN/m to 41.3 (potato peels pow-
der), 33.6 (sugar cane molasses), 41 (white beans powder) 
and 38.2 mN/m (waste frying oil). Though good emulsi-
fication values of all these biosurfactant solutions were 
obtained to about 55 to 57% (Fig. 1a). In the current study 
among nitrogen sources tested preferably urea act as a 
good nitrogen source that showed surface tension reduc-
tion of 31.4 mN/m and ODA value of 2 cm (Fig. 1b). It 
was observed that white beans powder and waste frying 
oil gave significant oil displacement value. the The char-
acterization of substrate samples in terms of total organic 
carbon and nitrogen content of the yeast extract, white 
beans powder and potato peels powder used in this study 
is presented in Additional file 1: Table S1. It has been also 
found that combination of carbon sources enhances bio-
surfactant synthesis. The final optimized cost effective 
media was [white beans powder (6% w/v) + waste frying 
oil (1.5% w/v) + urea (0.1% w/v)] with significant lipo-
peptide yield indicated ODA of 4.9  cm, emulsification 
index of 69.8% and surface tension reduction value up to 
28.8 mN/m (Fig. 1c; Additional file 1: Fig. S5a, b).

Fig. 1  SFT, E24 and ODA values for lipopeptide production by Bacillus subtilis SNW3 a with alternative carbon sources used individually, b different 
nitrogen sources, c with a combination of carbon and nitrogen energy sources and d production analysis of surfactin under optimized conditions 
with yeast extract as a reference, in shake flask fermentation at 30 °C. P.P.P: potato peels powder; W.B.P: white beans powder; Mol.: molasses; W.F.O: 
waste frying oil; Y.E: yeast extract
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We aimed the use of alternative non-conventional 
media for lipopeptide production with optimized media 
gave 1.17 g/L of crude lipopeptide that was almost dou-
ble from 0.56 g/L with yeast extract control media, with 
biomass yield of 4.6 and 3.2 g/L respectively (Fig. 1d). The 
cost effective usage of media component showed that 
on average 1 kg of white beans powder with 240 mL of 
waste frying oil and 640 g of yeast extract media would 
be enough for preparing 16 L of fermentation media that 
gave 1.17 g/L of surfactin production.

Thin layer chromatography analysis
Characterization of crude biosurfactant produced with 
final optimized media by Bacillus subtilis SNW3 was car-
ried out by thin-layer chromatography (TLC) and Fourier 
transform infrared spectroscopy (FTIR). Results obtained 
by TLC indicate the lipopeptide nature of the biosur-
factant product with most prominentband observed 
against standard surfactin having retention factor (Rf ) 
value of 0.68 as illustrated in (Fig. 2c, d).

Structural characterization of biosurfactant produced 
by FTIR
The FTIR spectra represent the presence of carboxylic 
functional groups and aliphatic amines the characteris-
tic of the lipopeptide nature of biosurfactant produced. 
The FTIR spectra show a sharp peak at 1023 cm−1 and 
972  cm−1 that corresponds to the presence of C–N 
aliphatic amines in standard and crude biosurfactant 
(Fig.  2a, b). The peaks in FTIR spectra at 1450 and 
1130 suggest the presence of stretching bands between 
carbon atoms and hydroxyl groups. The absorbance 
appears at 1762  cm−1 and 1757  cm−1 attributed to 

the vibrations due to the ester carbonyl group of pep-
tide components. The peaks observed in FTIR spectra 
at 2942 and 2926 corresponds to the presence of C–H 
bands (CH2–CH3 stretching). Another peak ranging 
from 3500 to 3200 cm−1 indicated the presence of alco-
hols and phenols (O–H stretch, H-bond). The spectra 
presented in the current study in comparison to stand-
ard surfactin from sigma suggested the presence of 
peptide moiety and aliphatic groups, a distinctive fea-
ture of lipopeptides nature of biosurfactant produced 
by Bacillus subtilis SNW3.

Lipopeptide screening for antimicrobial activity
In this study, we observed that lipopeptides produced 
by Bacillus subtilis SNW3 showed antimicrobial and 
synergistic effects with antibiotics against Escheri-
chia coli and Salmonella typhi. In the case of lipopep-
tide alone, the growth of E. coli was affected more as 
compared to S. typhi. However, in combination with 
antibiotics, the results obtained showed an increase in 
zone of inhibition from 18 to 30 mm for E. coli and 42 
to 45 mm for S. typhi containing lipopeptide plus cip-
rofloxacin (Fig.  3a). Thus, the addition of lipopeptide 
renders bacteria more sensitive to ciprofloxacin used 
in the case of E. coli. Similarly, the inhibition zone 
around lipopeptide plus clarithromycin increased from 
20 to 30 mm and 19 to 25 mm for E. coli and S. typhi 
(Fig.  3b). In general, lipopeptide showed antibacterial 
and an additive effect while used in combination with 
antibiotics, shown in Additional file 1: Fig. S2.

Fig. 2  FTIR spectrum and TLC profile of crude lipopeptide produced by Bacillus subtilis SNW3 in comparison to standard surfactin show as a FTIR of 
standard surfactin, b FTIR of crude lipopeptide extract, c TLC profile of crude lipopeptide extract, d TLC profile of crude lipopeptide in comparison to 
standard surfactin
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Critical micelle concentration (CMC) and critical micelle 
dilution (CMD) determination
The crude biosurfactant obtained from Bacillus subtilis 
SNW3 which was dissolved in distilled water at differ-
ent concentrations showed a reduction in surface ten-
sion of water from 72 to 36  mN/m with an increase in 
lipopeptide concentration. Lipopeptide produced seems 
to be more competent exhibited a CMC at 0.5  mg/mL, 
with surface tension reduction of 36 mN/m (Additional 
file 1: Fig. S3a). The surface tension values remain stable 
with an SFT value of 29 mN/m to 32 mN/m after making 
threefold dilutions showing effective lipopeptide concen-
tration in the medium (Additional file 1: Fig. S3b).

Stability studies
The applicability of biosurfactant produced depends on 
its behavior shows at different conditions of temperature, 
pH, and salinity (Gudina et  al. 2010). The lipopeptide 
produced during the current study was found to be more 

stable after exposure to various temperatures ranges 
since no significant difference was detected for surface 
tension reduction values from 20 to 121 °C. The favorable 
surface tension reduction values were observed over a pH 
range of 1 to 11, although in between pH 5 to 7 lipopep-
tides produced was found to be more stable (Fig. 4). At 
pH 1, surface tension value raised slightly up to 35 mN/m 
that means that produced lipopeptides possess stability 
at acidic conditions but more effectively stable at alkaline 
conditions. Besides this, lipopeptide exhibit stablity over 
a wide range of salt concentrations 1 to 8%, an increase in 
SFT value at 10% NaCl concentration.

Effect of lipopeptide on plant growth promotion
In this study, Solanum lycopersicum (tomato), Pisum 
sativum (pea), Capsicum annuum (chili pepper), and 
Lactuca sativa (lettuce) were examined to demonstrate 
the effects of biosurfactants, that showed significantly 
(P < 0.05) better effects on seed germination and plant 

Fig. 3  Antibiogram of crude lipopeptide extract tested with antibiotics a ciprofloxacin and b clarithromycin, against Escherichia coli and Salmonella 
typhi 
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growth promotion. Statistical data about seeds germi-
nation and plants growth obtained is shown in Addi-
tional file 1: Table S2. The best results for germination 
were obtained at higher concentrations (0.7  mg/mL) 
of lipopeptide tested. Among all seeds tested signifi-
cant (P < 0.05) stimulation was observed for chili pep-
per seeds, showed almost double 51.7% germination 
at 0.5  g/100  mL in comparison to control 21.6% with 
MilliQ water. Similarly, tomato seeds showed 68.75% 
germination at 0.7  g/100  mL in comparison to con-
trol water (56.25%), while pea and lettuce seeds were 
affected to some extent as shown in (Additional file 1: 
Fig. S4a).

The applied biosurfactant treatments also augmented 
the dry biomass of plants. The plants that arose after 
treating with different concentrations of lipopeptide 
displayed higher biomass in comparison to control. 
Our current findings showed that a significant (P < 0.05) 
increase in weight was observed for chili pepper and let-
tuce at 0.7 g/100 mL of lipopeptide. Biomass exhibited by 
chilli and lettuce was 0.21 g and 0.25 g respectively, that 
is four times increase in relative to control 0.06 g of the 
seedling. Although for pea and tomato similarly a posi-
tive effect was noted with the addition of 0.7  g/100  mL 
of lipopeptide that significantly increase (P < 0.05) dry 
biomass almost double in relative to control (Additional 
file 1: Fig. S4b). Interestingly, in the present study positive 

effect of lipopeptide on dry biomass was observed for all 
seeds tested but maximum for chili pepper and lettuce.

Almost all surfactin concentrations tested showed an 
immense effect on root elongation. The plants treated 
with a higher concentration of lipopeptide 0.7 g/100 mL 
enhanced the root growth at maximum. Biosurfactant 
treatment signifies (P < 0.05) better elongation of seedling 
roots in lettuce, pea, and chili pepper almost two times 
greater than control. The tomato seedlings treated with 
lipopeptide also showed an increase in root development 
(Additional file 1: Fig. S4c).

All lipopeptide concentrations tested showed signifi-
cant effect on plant growth parameters. The chili pepper 
plants showed a significant (P < 0.05) difference in height 
8.06  mm after treatment with 0.7  g/100  mL of lipopep-
tides almost double as compared to control (Additional 
file 1: Fig. S4d). Whereas lettuce plants showed a gradual 
increase in height with an increase in lipopeptide con-
centration. The effects of lipopeptide on seed germina-
tion and plant growth promotion are shown in Fig. 5.

Bioremediation assay using shake flask fermentation
Biosurfactants are used to emulsify hydrocarbons with 
the reduction in surface tension, enhancement of water 
solubility, and increasing oil displacement from soil par-
ticles (Andrade Silva et  al. 2014; Geetha et  al. 2018). In 
the present study, the pattern for Bacillus subtilis SNW3 

Fig. 4  Stability of crude lipopeptide extract against various environmental factors like temperature ranges 20–121 °C, NaCl conc. 1–10% (w/v) and 
pH ranges 1–11. DW distilled water, Temp temperature, NaCl sodium chloride
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growth on crude oil and MSM revealed that there was 
an increase in microbial growth up to 13 days of incuba-
tion, whereas after that decline in growth was recorded. 
Observable effects on growth were observed with 1 and 
1.5% of crude oil used. With increase in microbial growth 
the SFT value of the culture medium reduced from 72 to 
29 mN/m, indicates the lipopeptide production by Bacil-
lus subtilis SNW3 (Fig. 6a). The simultaneous microbial 
growth and crude oil biodegradation in culture broth 
media demonstrate utilization of various components 
of crude oil by Bacillus subtilis SNW3 (Patowary et  al. 
2017). However, we observed that maximum degradation 

86% was achieved with 1.5% crude oil as compared to 
control (Fig. 6b; Additional file 1: Fig. S5c, d). Schematic 
diagram showing bacterial strain activity in degradation 
of crude oil recalcitrant hydrocarbons with simultane-
ously lipopeptide production (Additional file 1: Fig. S6).

Bioremediation of crude oil in the soil through various 
design treatments
The current study revealed that lipopeptide produced by 
Bacillus subtilis SNW3 effectively removes crude oil from 
the soil. After applying different strategies, the residual 
crude oil content of each treatment showed different 

Fig. 5  Effect of crude lipopeptide extract on seed germination of A lettuce, B tomato, C beans, and D chili The portion (A–D1) show untreated 
control plants and (A–D2) for plants treated with lipopeptide extract at 0.7 g/mL for 40 days
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extents of biodegradation. It was revealed that the com-
bined strategy used in T3 gave measurable remediation 
of crude oil as compared to other treatments tested. 
There was a gradual increase in bioremediation capacity 
with time, maximum after 90 days. T3 treated with Bacil-
lus subtilis SNW3 cultured microorganisms and CFS 
containing lipopeptides (80.2%), show a significant dif-
ference from T0 control (11.6%) with distilled water. The 
better bioremediation results (73.2%) were obtained in 
T1 with the addition of lipopeptide than those obtained 
by T2 (63.8%) with the addition of biosurfactant produc-
ing Bacillus subtilis SNW3.

In the current study while making a comparison 
for bioremediation with chemical compounds it was 
observed that in T4, the addition of Tween 80 showed 

65.4% degradation lower than those treated with biosur-
factants. The oil reduction results obtained for T5 with 
fertilizer showed (32.6%) while the lowest degradation 
(5.4%) was observed for T6 using autoclaved soil (Fig. 7).

Discussion
Biosurfactant production by using cost-effective sub-
strates produced by Bacillus subtilis was previously stud-
ied by many researchers (Secato et al. 2016). An easy way 
to achieve cost-effective bioprocesses for biosurfactant 
production is by using a low-cost substrate. The use of 
waste frying oil as a sole source of carbon and energy for 
lipopeptide production by two Bacillus strains were pre-
viously reported by Md Badrul Hisham et al. (2019) that 
gave surface tension reduction values up to 36  mN/m. 

Fig. 6  The growth of a Bacillus subtilis SNW3 on crude oil and MSM with surface tension reduction values for 21 days, plane lines for OD600 and 
dotted lines for SFT, and b quantity of crude oil degraded (%) by Bacillus subtilis SNW3 while growing on crude oil and MSM for 21 days

Fig. 7  The percent degradation of crude oil contaminated soil through various design treatments from T1–T6 for 90 days
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Our results showed that Bacillus subtilis SNW3 grow-
ing on 2% waste frying oil gave 38 mN/m reduction value 
are in line with previous findings. De Lima et al. (2009) 
reported rhamnose production by Pseudomonas aerugi-
nosa PACL strain cultivating on waste frying soybean oil 
with 100% emulsification index, surface tension reduc-
tion up to 26.0 mN/m, and concentration of 3.3 g/L while 
in the current study 56.3% emulsification was observed 
with 2% waste frying oil. Research conducted by Abdel-
Mawgoud et al. (2008) investigated surfactin production 
in a cost-effective manner with the use of 16% molasses 
and other trace elements that produce a surfactin yield 
of 1.12  g/L. However, it is also stated in many studies 
that the presence of hydrophobic substrate is essential 
for the production of biosurfactants (Santos et al. 2016). 
According to literature different types of oils e.g., vegeta-
ble oils, waste cooking oil, glycerol, glucose, and diesel 
were screened out for biosurfactant production by fungal 
species M. circinelloides that showed 11.7 cm ODA with 
the use of waste cooking oil as carbon source. In another 
study conducted by Hasanizadeh et  al. (2017) for bio-
surfactant production showed maximum biosurfactant 
production with the use of 8% (v/v) waste cooking oil as 
a carbon source. Nitrogen is considered an important 
component of the medium used for biosurfactant pro-
duction (Wu et al. 2008). In the literature, for higher bio-
surfactant yields number of nitrogenous compounds are 
listed that include yeast extract (Rodrigues et al. 2006a), 
beef extract, urea (Elazzazy et  al. 2015), peptone, and 
meat extract (Gudiña et al. 2011). Urea was considered as 
a cheaper nitrogen source for significant lipopeptide pro-
duction in comparison to sodium nitrate (Elazzazy et al. 
2015; Farace et  al. 2015; Ghribi and Ellouze-Chaabouni 
2011). Yeast extract has been extensively selected in sev-
eral studies (Marcelino et al. 2019). The yeast extract was 
used as a control medium as previously yeast extract was 
found as the most preferable substrate for significant bio-
surfactant production (Qazi et al. 2013). For instance, L. 
paracasei A20 preferred yeast extract as the significant 
medium for biosurfactant production followed by meat 
extract, while peptone was chartagorised as least impor-
tant component of the medium (Gudiña et al. 2011).

It was reported previously that limitation in nitrogen 
concentration results in higher biosurfactant yield (Wu 
et  al. 2019). The high carbon to nitrogen ratio (C/N) 
of the production medium (i.e., low level of nitrogen) 
limits bacterial growth, promoting cell metabolism for 
metabolites production (Nurfarahin et al. 2018). P. aer-
uginosa LBM10 in a culture medium containing soy 
bean oil as carbon source and NaNO3 as the source of 
nitrogen produce significant biosurfactant yield. Media 
composition with low nitrogen level produce (1.42 g/L) 
as compared to higher nitrogen concentrations with 

biosurfactant yield of 0.94 g/L (Prieto et al. 2008). The 
Kjeldahl or Dumas methods used for the evaluation of 
the crude protein in foods determine the total organic 
nitrogen of foods (Chandra-Hioe et al. 2018). The nitro-
gen content determination is crucial for the analysis of 
crude protein content. However, these provide rough 
assumptions as to the relative nitrogen and amino acid 
content differ between food proteins (Mæhre et  al. 
2018).

In the current study substrates were used in combi-
nation to increase biosurfactant production by reduce 
the price of culture media (Rufino et  al. 2008). Slivin-
ski et al. (2012) reported the use of okara obtained after 
processing ground soybeans as a substrate for surfac-
tin by Bacillus pumilus UFPEDA 448. Zhu et  al. (2013) 
also investigated the use of soybean flour as a substrate 
for surfactin production by Bacillus amyloliquefaciens 
XZ-173. To the best of our knowledge, for economical 
biosurfactant production, only a few studies are con-
ducted by using soybean, but no single study is present 
that investigated the use of white beans powder as a 
substrate for low-cost production. The concentration of 
crude lipopeptide produced was (about 1.17 g/L), closed 
to other reported values for biosurfactant production 
using cost-effective substrates. The cost required for the 
preparation of one liter of optimized low-cost media in 
the current study is 0.078 EUR, which is just 0.8% of one-
liter synthetic yeast extract media cost 10.5 EUR. Hence 
utilizing these cost-effective nonconventional media 
instead of synthetic yeast extract contribute to a 99% 
reduction in cost required for medium preparation.

It was reported by Samak et  al. (2020) that 30°C is 
the optimum temperature for biosurfactant produc-
tion that is in  correspondence with results obtained in 
the current study. Our findings showed that no signifi-
cant lipopeptide was produced at a static condition that 
might be due to lack of oxygenation (Santos et al. 2014). 
In a previous study conducted by Hemlata et al. (2015) 
for biosurfactant production by Stenotrophomonas 
maltophilia NBS-11 showed maximum production at 
pH 7. Urea and ammonium nitrate have been already 
used and reported in the literature as a very cost-effec-
tive nitrogen source for biosurfactant production by 
Candida spp. (Alwaely et al. 2019).The study conducted 
by Medeot et al. (2017) showed a high yield of biosur-
factants (1.7 mg/mL) while using NH4NO3 and glucose 
as substrate for production by Bacillus amylolique-
faciens MEP218. In the same way, the combination of 
sucrose and NH4NO3 was reported by Fernandes et al. 
(2016),  gave high yield of biosurfactant (0. 2  g/L) by 
Bacillus subtilis RI4914. Moreover, a study conducted 
for biosurfactant production showed optimum yield 
with 0.3% sodium nitrate by Pseudoxanthomonas 
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sp. G3 (Purwasena et  al. 2020). Current findings also 
showed maximum lipopeptide yield while using carbon 
nitrogen substrates in combination.

Surfactin acts as quorum-sensing molecule that pro-
vides a potential tool for the regulation of fermentation 
(Gupta et  al. 2017), while carbon metabolism regulates 
the balance between the products and biomass. Biosur-
factant production occurs frequently during a stationary 
stage of the cell growth after depletion of the nitrogen 
source (Onwosi and Odibo 2012). As a result of the cur-
rent study, the final optimized carbon–nitrogen com-
bination of the media significantly produced maximum 
biosurfactant with biomass and crude lipopeptide yield 
of 4.6 and 1.17 g/L respectively. Recently, Phulpoto et al. 
(2020) reported glycerol and NH4NO3 as combined C/N 
media for surfactin production that significantly pro-
duce biomass and crude biosurfactant yield of 4140 and 
1255 mg/L, respectively. Similarly, it was reported by Lu 
et al. (2016), that for fengycin production through Bacil-
lus amyloliquefaciens fmb-60 biomass yield could be a 
significant factor. In Bacillus amyloliquefaciens BZ-6 (Liu 
et al. 2012), Bacillus amyloliquefaciens MEP218 (Medeot 
et al. 2017), Bacillus amyloliquefaciens fmb-60 (Lu et al. 
2016) and Bacillus subtilis strains (Makkar et  al. 2011), 
a direct correlation was reported between lipopeptide 
production and biomass yield. Primary characterization 
for biosurfactant produced by Bacillus subtilis SNW3 
was carried out by using TLC using surfactin from sigma 
as standard. Here, our results for TLC of crude biosur-
factant sample indicated lipopeptide nature of biosur-
factant product through the presence of surfactin with an 
Rf value of 0.68. These findings are consistent with other 
reported studies, where Rf value of 0.76 was observed by 
Ramyabharathi et  al. (2018) for surfactin produced by 
Bacillus subtilis. Results obtained from previous findings 
also showed Rf values of 0.09, 0.3, and 0.75 for fengycin, 
iturin, and surfactin respectively using Bacillus subti-
lis UMAF6619, UMAF6614, UMAF8561, UMAF6639, 
and Bacillus amyloliquefaciens PPCB004 (Arrebola et al. 
2010). FTIR results obtained were following TLC. The 
chemical structure of biosurfactant produced by Bacil-
lus subtilis SNW3 was revealed by analyzing the crude 
extract using fourier transform infrared spectroscopy. 
FTIR analysis of crude biosurfactant produced by Bacil-
lus subtilis SNW3 showed that it contains alcohols and 
carboxylic acids (lipids) and peptide moieties (proteins) 
that indicate lipopeptide nature of biosurfactant. A simi-
lar pattern of FTIR aliphatic and peptide moieties was 
reported for the presence of lipopeptides by Kiran et al. 
(2017). The observed pattern of IR spectrum was very 
similar to the spectrum obtained by de Faria et al. (2011) 
who reported the appearance of the stretch at 1721 cm−1 
that indicates the presence of lactone carbonyl group. 

Similar FTIR absorption spectra were reported in the lit-
erature for lipopeptide (Pereira et al. 2013).

Lipopeptide produced during the current study not 
only provides potential antibacterial activity but also ren-
ders bacteria more susceptible to the available antibiotics. 
Biosurfactants could be a suitable substitute for antimi-
crobial compounds and synthetic medicines and might be 
used as efficient therapeutic agents (Gudiña et al. 2013). 
The antimicrobial effect of biosurfactants is due to their 
potential to form pores inside cell membranes (Gudiña 
et  al. 2010) this characteristic might increase the effec-
tiveness of antibiotics. Sambanthamoorthy et  al. (2014) 
revealed antimicrobial activities against A. baumannii, 
E. coli, and S. aureus at a concentration of 25–50  mg/
mL. In our findings lipopeptide showed antimicrobial 
effect at a lower concentration of 10 mg/mL that showed 
more effectiveness of the lipopeptide product. These 
results are consistent with previous studies which sug-
gest a synergistic effect of biosurfactant with antibiotics 
(Joshi-Navare and Prabhune 2013; Rivardo et  al. 2011). 
The promising feature of natural antimicrobial peptides 
is their low toxicity and slow microbial resistance emer-
gence rate as compared to the current antibiotics (Wang 
et  al. 2019). Our findings suggested that lipopeptides 
could extend the clinical use of current antibiotics. Dom-
han et  al. (2018) reported lipopeptides as novel antimi-
crobial agents against resistant microbial pathogens with 
favorable pharmacokinetics and enhanced antibacterial 
activity.

The critical micelle concentration (CMC) is the mini-
mum biosurfactant concentration needed to achieve the 
lowest surface tension value at which micellar aggregates 
formation starts (Ma et al. 2016). CMC is an important 
characteristic of surface-active agents for evaluation of 
their interfacial activity (Zhou et al. 2019b). The CMC of 
crude lipopeptide produced by Bacillus subtilis SNW3 
was found to be ≤ 0.58 mg/mL, significant as compared 
to 2.7 mg/mL (Ghasemi et  al. 2019). These results were 
also efficient as compared to commonly used synthetic 
surfactants sodium dodecyl sulfate (SDS) that attains 
CMC value at 2100 mg/L (Chen et al. 2006).

After biosurfactant production purification strategies 
account for near 60% of the total cost (Banat et al. 2010). 
Taking into consideration the industrial economic value, 
most the biosurfactants are required either in crude form 
or in form of broth preparations (Banat et al. 2010). Lipo-
peptide produced by Bacillus subtilis SNW3 exhibits 
excellent stability over an extensive range of pH (1–11), 
salinity (1–8%), temperature (20–121°C), and even after 
autoclaving. The decrease in stability of biosurfactants 
at acidic conditions might be due to the protonation of 
negative polar ends of surfactin molecules (Gogoi et  al. 
2016). A previous study conducted by Purwasena et  al. 
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(2019) showed biosurfactant stability with emulsifica-
tion at a high temperature of 120  °C, pH of 4–10, and 
NaCl concentration of 10% (w/v) that are in accordance 
with the current study. Moussa et al. (2013) showed bio-
surfactant stability at 20–120°C produced by Bacillus 
methylothrophicus and Rhodococcus equi strains. Differ-
ent studies showed reduced biosurfactant stability under 
alkaline conditions. Several other studies have been 
reported about the stability of the biosurfactants at high 
salinity and temperature (Rodrigues et al. 2006b; Gudina 
et al. 2010). Significant stability of lipopeptide was found 
at high salinity and temperature and our findings were 
inconsistent with previous studies (Das and Kumar 2018; 
Hentati et al. 2019; Purwasena et al. 2019). Surfactin with 
excellent stability at wide range of temperature, pH and 
salinity widens its applicability in several industrial sec-
tors e.g. food, pharmaceuticals, detergents, agricultural 
and bioremediation (Fenibo et al. 2019).

In the modern agricultural field use of bacterial bio-
surfactants plays an important role as they are eco-
friendly and affordable (Hafeez et  al. 2019; Muthusamy 
et  al. 2008). Lipopeptides derived from bacterial strains 
are eco-friendly, less toxic, with more stability in harsh 
environments and highly biodegradable as compared to 
their synthetic counterparts (Lima et al. 2011). The gen-
era Bacillus and Pseudomonas proved as e major produc-
ers of biosurfactant molecules (Hussain and Khan 2020; 
Zhou et  al. 2019a). Lipopeptide produced by Bacillus 
subtilis SNW3 had a noticeable effect on seed germina-
tion and plant growth promotion that becomes more 
prominent with the increase in concentration. Our find-
ings showed significant increase in seed germination 
of all four species tested most prominent for chilli and 
tomato. This increase in germination might be due to 
the reason that biosurfactant increases the permeabil-
ity of seed coat to water that indirectly makes quicker 
the metabolic processes inside seeds (Kaur et  al. 2017). 
The applied lipopeptide treatments augmented the dry 
biomass of all seeds tested, maximum for chilli pepper 
and lettuce. Similar results with an increase in plant bio-
mass were observed by Liu et al. (2014). This increase in 
plant biomass might be due to the enhanced production 
of phytohormones and improved mineral solubilization 
in soil (Das and Kumar 2016). Almost all biosurfactant 
concentrations tested showed an immense effect on 
root elongation with better elongation in lettuce, pea 
and chilli. Enhanced plants root elongation could be due 
to decrease strength of wrapping tissues and seed coat-
ing that favors root development (da Silva et  al. 2015). 
Another reason for the increase in root development 
by applying biosurfactants could be due to minimizing 
anaerobiosis conditions in the soil (Shukry et  al. 2013). 
In current study significant effect was observed on plant 

growth promotion more prominent for chilli plants as 
compared to control. It was demonstrated by Cawoy et al. 
(2014) that surfactin by Bacillus isolates provokes con-
centration dependent induce systemic resistance (ISR). 
Surfactin act as a signaling molecule that provokes canni-
balism and the formation of a matrix (López et al. 2009b). 
The improved plant development with biosurfactants 
ciould be incresae nutrients bioavailability and emulsifi-
cation of hydrophobic compounds (Marchut-Mikolajczyk 
et al. 2018). Several researchers have reported the biosur-
factant effect on seed germination, but to our knowledge, 
no previous study is available about current vegetable 
plants. Biopreparations are widely used nowadays for the 
enhanced seed quality and improved plant germination 
in contaminated soil (Mukherjee et  al. 2006). However, 
some research gaps are still required to be filled about 
mechanisms followed by biosurfactants concerning 
enhanced growth and development of plants.

Lipopeptides are mostly applied in the biomedical 
field and only a few reports are present that showed the 
success story of lipopeptides in bioremediation of oil-
polluted environments. In recent years, the use of bio-
surfactants for the treatment of oil-contaminated soil is 
increased (Karlapudi et  al. 2018). Indigenous microbes 
that are normally present in oil-contaminated soil are 
mainly involved in the biodegradation of oil pollutants 
(Iwai et  al. 2011; Lee et  al. 2018). Through introducing 
biosurfactant-producing bacteria in the contaminated 
environment results in enhanced bioremediation utiliz-
ing solubilization, mobilization, and emulsification of 
hydrocarbons (Nievas et  al. 2008). Crude oil is a com-
plex mixture of aliphatic and aromatic hydrocarbons 
that inhibits the uptake of carbon sources required for 
metabolism and growth (Das and Chandran 2011). Many 
reports are present about the efficacy of biosurfactants 
produced by Bacillus species in oil recovery methods, 
bioremediation processes and industrial sectors (Green-
well et al. 2016; Ismail et al. 2013; Pereira et al. 2013).

Data obtained from our findings suggested Bacillus 
subtilis SNW3 as a potential bioremediation agent as 
compared to previously reported biodegradation studies 
(Sathishkumar et  al. 2008). Bioremediation experiments 
conducted by Kumari et  al. (2012) showed degradation 
percent of 49.5 and 60.6% for total petroleum hydrocar-
bons (TPH) by Rhodococcus sp. NJ2 and Pseudomonas 
sp. BP10 respectively. In our study more significant bio-
degradation of 86% was observed after 21 days. Al-Was-
ify and Hamed (2014) explained that P. aeruginosa reveal 
about 77.8% of maximum degradation after an incuba-
tion period of 28 days. Studies reported bioremediation 
of 49–54% for crude oil-polluted environments (Bordoloi 
and Konwar 2008) and more than 85% for diesel oil-con-
taminated sand (Silva et al. 2010).
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Biosurfactant produced by S. marcescens UEO15 con-
firmed 59% and 78% degradation of kerosene and crude 
oil, in comparison of 25% and 10% with distilled water 
used as control (Elemba et  al. 2010). Our study showed 
86% efficacy in comparison to previous findings suggest-
ing it as a more suitable bioremediation component in 
environmental sectors.

Tween 80 is suitable for remediation of contaminated 
soil because of its low cost as compared to other non-
ionic surfactants (Bautista et al. 2009), most successfully 
reported for polycyclic aromatic hydrocarbons PAHs 
(Gong et  al. 2015). In the current study, T4 showed a 
65.4% degradation rate that might be due to acidic condi-
tions of soil that is unsuitable for microbial growth (Liu 
et al. 2010). Our findings suggested that treatments with 
biosurfactants enhanced the degradation rate employed 
it as a better bioremediation agent. Mishra and Singh 
(2012) reported that among degradative enzymes alkane 
hydroxylase produced by Rhodococcus sp. NJ2 and P. 
aeruginosa PSA5 result in degradation of n-hexadecane. 
Genes involved in the production of these degradative 
enzymes are reported in previous studies (de Gonzalo 
et al. 2016). Previous studies have reported the fertilizer 
as treatment to check the effects of NPK on the biodeg-
radation of hydrocarbons (Pelletier et al. 2004). Nutrients 
especially phosphorus, nitrogen, and in some cases, iron 
are very essential ingredients for successful biodegrada-
tion of hydrocarbon pollutants (Adams et al. 2015).

Moreover, bioremediation technology is considered to 
be non-invasive and quite cost-effective (Azubuike et al. 
2016; Kumar and Yadav 2018). Biodegradation through 
microorganisms signifies one of the principal mecha-
nisms by which petroleum and other hydrocarbon pollut-
ants can be removed from the environment (Al-Hawash 
et al. 2018; Das and Chandran 2011) and is cheaper than 
other remediation technologies (da Rocha Junior et  al. 
2019).

The current study demonstrated the use of cost-effec-
tive media for lipopeptide production by Bacillus subti-
lis SNW3. The possibility of utilizing waste frying oil in 
combination with white beans might be proved to be effi-
cient to substitute yeast extract media and worthwhile for 
its industrial-scale production. The lipopeptides obtained 
exhibited potential emulsifying and surface tension 
reducing capabilities with strong stability at a wide range 
of pH, temperature, and salinity. In addition, lipopeptide 
produced showed higher potential for seed germination 
and plant growth promotion of Capsicum annuum, Lac-
tuca sativa, Solanum Lycopersicum, Pisum sativum, and 
removal of crude oil from contaminated soil, suggesting 
its potential applications in environmental and agricul-
ture sectors.
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