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Investigation of the robustness 
of Cupriavidus necator engineered strains 
during fed‑batch cultures
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Abstract 

It is of major interest to ensure stable and performant microbial bioprocesses, therefore maintaining high strain 
robustness is one of the major future challenges in industrial microbiology. Strain robustness can be defined as the 
persistence of genotypic and/or phenotypic traits in a system. In this work, robustness of an engineered strain is 
defined as plasmid expression stability, cultivability, membrane integrity and macroscopic cell behavior and was 
assessed in response to implementations of sugar feeding strategies (pulses and continuous) and two plasmid 
stabilization systems (kanamycin resistance and Post-Segregational Killing hok/sok). Fed-batch bioreactor cultures, 
relevant mode to reach high cell densities and higher cell generation number, were implemented to investigate the 
robustness of C. necator engineered strains. Host cells bore a recombinant plasmid encoding for a plasmid expression 
level monitoring system, based on eGFP fluorescence quantified by flow cytometry. We first showed that well-con-
trolled continuous feeding in comparison to a pulse-based feeding allowed a better carbon use for protein synthesis 
(avoiding organic acid excretion), a lower heterogeneity of the plasmid expression and a lower cell permeabilization. 
Moreover, the plasmid stabilization system Post-Segregational Killing hok/sok, an autonomous system independent 
on external addition of compounds, showed the best ability to maintain plasmid expression level stability insuring a 
greater population homogeneity in the culture. Therefore, in the case of engineered C. necator, the PSK system hok/
sok appears to be a relevant and an efficient alternative to antibiotic resistance system for selection pressure, espe-
cially, in the case of bioprocess development for economic and environmental reasons.
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Keypoints

•	 Evaluation of engineered Cupriavidus necator stabil-
ity and robustness via single-cell analysis

•	 Continuous feeding strategy less stressful than pulse-
based feeding

•	 Higher cell homogeneity with hok/sok plasmid stabi-
lization system than with kanamycin

Introduction
Ensuring phenotypic homogeneity in engineered micro-
organisms is of major interest to enable maintaining pro-
duction yields and avoiding process instability (Binder 
et  al. 2017). However, the insertion of a recombinant 
plasmid generally leads to a metabolic load on host cells 
due to heterogeneous gene expression, plasmid mainte-
nance and recombinant molecule production (Bentley 
and Quiroga 1993; Ceroni et al. 2018; Glick 1995; Lv et al. 
2019; Million-Weaver and Camps 2014; Park et al. 2018; 
Silva et  al. 2012). This means that two major biological 
mechanisms are competing within plasmid-bearing cells: 
plasmid maintenance and cell growth (Silva et al. 2012). 
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It is generally admitted that plasmid-free cells grow faster 
than plasmid-bearing cells, resulting in a growth rate dif-
ference that intensifies segregational instability (Bentley 
et  al. 1990; De Gelder et  al. 2007; Glick 1995). Conse-
quently, recombinant protein expression decreases glob-
ally and leads to the reduction of process performance.

Green Fluorescence Protein (abbr. GFP) and some of 
its derivatives such as enhanced GFP (abbr. eGFP), have 
been shown to be useful biosensors for the detection of 
variations in gene expression both in single-cells and 
in total populations (Argueta et al. 2004; Blokpoel et al. 
2003; Cao and Kuipers 2018; Carroll et al. 2003; Chuda-
kov et  al. 2010; Morschhäuser et  al. 1998; Utratna and 
O’Byrne 2014; Wons et  al. 2018). In our previous work 
(Boy et  al. 2020), a plasmid expression level monitoring 
method based on the expression of a plasmid-encoded 
eGFP biosensor has been designed. Our system was 
tested in culture conditions allowing validating its rel-
evance to quantify both homogeneous and induced-
heterogeneous cell populations. The results showed that 
this specific eGFP biosensor could be valuable to study 
both plasmid expression level variations under recombi-
nant production of a molecule of interest in Cupriavidus 
necator and strain robustness under intensive production 
conditions. Strain robustness in that context corresponds 
to the capacity of the cells to keep their maximum per-
formance during the bioprocess. This means that cells 
will retain their genetic background, in particular in the 
case of engineered cells overproducing product of inter-
est, and will also maintain their fitness (membrane integ-
rity, cultivability, and macroscopic behavior) in order to 
insure stable production.

Cupriavidus necator H16 is a chemolithoautotrophic 
bacterium, well-known for its capacity to produce 
and store up to 80% of its dry cell weight of Poly-β-
hydroxybutyrate (abbr. PHB) (Pohlmann et  al. 2006; 
Ryu et al. 1997). Its genome was entirely sequenced and 
mainly annotated (Cramm 2009; Pohlmann et  al. 2006; 
Schwartz et al. 2003). C. necator has a versatile metabo-
lism and is naturally able to consume organic carbon 
sources [fructose Budde et  al. 2011; Grousseau et  al. 
2014), oils (Budde et  al. 2011), formic acid (Grunwald 
et al. 2015), fatty acids (Johnson 1971; Wang et al. 2010), 
organic acids (Doi et al. 1988)] and inorganic ones [CO2 
(Repaske and Mayer 1976; Tanaka et al. 1995)]. So, devel-
oping and improving tools for the genetic engineering of 
C. necator would open up to new possibilities in terms 
of synthetic biology of the strain. The interest in develop-
ing a complete genetic toolbox for C. necator has intensi-
fied in recent years, especially for plasmid construction 
(Bi et al. 2013; Gruber et al. 2014; Sato et al. 2013; Sydow 
et  al. 2017). To increase strain robustness, examples of 
stabilizing mechanisms have already been efficiently 

transposed to recombinant plasmids in C. necator 
through stabilizing cassette insertion. They are classified 
in three main stabilizing categories. First, plasmid addic-
tion systems consist in the killing of plasmid-free cells, or 
the reduction of their growth rate (Friehs 2004). Three of 
them have already been adapted to C. necator: antibiotic 
resistance (e.g. kanamycin (Grousseau et al. 2014; Gruber 
et al. 2014), chloramphenicol (Sydow et al. 2017)), chro-
mosomal mutation complementation (e.g. single-cell aux-
otrophy through KDPG-aldolase (Voss and Steinbuchel 
2006), proline (Budde et al. 2011)) and Post-Segregational 
Killing (e.g. parDE operon from the RP4 plasmid (Gruber 
et al. 2014)). Second, site-specific recombination systems 
ensure that plasmid multimers formed during replication 
and/or recombination can be resolved by a site-specific 
recombination system. Each monomer is transmitted 
independently to daughter cells. This system can also be 
referred as plasmid multimer resolution system (Zielenk-
iewicz and Ceglowski 2001). The parCBA operon encod-
ing for the multimer resolution system of the plasmid 
RK2 (or RP4) (Easter et  al. 1998) from Escherichia coli 
has been tested in C. necator (Gruber et al. 2014). Third, 
active partitioning systems ensure that the plasmid cop-
ies are vertically transmitted efficiently to every daughter 
cell (Million-Weaver and Camps 2014; Schwartz et  al. 
2003; Zielenkiewicz and Ceglowski 2001). The partition 
locus of the megaplasmid pMOL28 from C. metalli-
durans CH34 has been successfully applied in C. necator 
H16 (Sato et al. 2013).

Hereinafter, attention was drawn to two plasmid addic-
tion systems: kanamycin resistance and hok/sok Post-
Segregational Killing system. On one hand, kanamycin 
resistance is rather commonly used with plasmids of.

C. necator (Grousseau et  al. 2014; Gruber et  al. 2014; 
Marc et al. 2017). On the other hand, to our knowledge, 
the hok/sok PSK system has never been used in C. neca-
tor before. First, the mode of action of kanamycin con-
sists in interfering with protein synthesis by binding to 
bacterial ribosome. This leads to an incorrect alignment 
with mRNA and consequently to an amino acid misread-
ing during protein synthesis. Non-functional peptide 
chains are synthesized. The kanamycin resistance sys-
tem used here is neomycin phosphotransferase II (abbr. 
NPTII) from the neo gene (i.e. neomycin-resistance) of 
the transposon Tn5, which is part of the aminoglycoside.

3’-phosphotransferase APH (3’)-II subclass (Yenofsky 
et al. 1990). Its mode of action consists in catalyzing the 
ATP-dependent phosphorylation of kanamycin on its 
3’-hydroxyl group and thus, making the antibiotic chemi-
cally unstable (Haas and Dowding 1975; Ramirez and 
Tolmasky 2010; Wright 1999; Yenofsky et al. 1990). Sec-
ond, the Post-Segregational Killing system hok/sok from 
the R1 plasmid of E. coli ensures plasmid stabilization by 
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the killing of plasmid-free cells. It encodes for two RNA: 
hok mRNA and sok antisense RNA. The hok gene encodes 
for the toxin protein Hok. The sok antisense RNA indi-
rectly regulates hok translation (Thisted et  al. 1994). 
Plasmid stabilization mechanism of the PSK system hok/
sok is based on the differential decay rate between sok 
antisense RNA, who has the highest, and the Hok toxin 
(Thisted et  al. 1994). During cell division, if the plas-
mid is transmitted only to one of the two daughter cells, 
plasmid-bearing cells will express the sok antisense RNA 
to block Hok toxin actions and remain viable. Plasmid-
free cells die from the toxin because the unstable anti-
sense sok RNA antitoxin has been degraded (Cooper and 
Heinemann 2000; Friehs 2004).

In addition, fluctuating environments are known to 
generate and/or amplify population heterogeneities and a 
loss of strain robustness (Barkai and Shilo 2007; Delvigne 
et al. 2015; Limberg et al. 2017; Masel and Siegal 2009). 
In Nature, cell populations have to adapt to fluctuating 
growth conditions (e.g. temperature, pH, nutrients, toxin 
concentrations). To do so, cell populations may improve 
their fitness thanks to individuals that evolve stochasti-
cally between several different phenotypes. Therefore, 
some cells might always be prepared to face sudden envi-
ronmental fluctuations (Acar et al. 2008; Kussell and Lei-
bler 2005). In industrial bioprocesses, the apparition of 
such transitory fluctuations (e.g. temperature, pH, nutri-
ent concentrations) might greatly disrupt process per-
formances: reduction of production and biomass yield, 
decreased growth and production rates (Hewitt et  al. 
2007; Lara et al. 2006; Limberg et al. 2017).

The objective of this work was to compare the robust-
ness (as previously defined as plasmid stability, mem-
brane integrity, cultivability and macroscopic microbial 
behavior) of C. necator strains carrying different plasmid 
stabilization systems (Kanamycin resistance and Post 
Segregational Killing systems) under well-controlled cul-
ture condition similar to the one optimized for recom-
binant overproduction of product of interest such as 
isopropanol (Grousseau et  al. 2014; Marc et  al. 2017). 
Two fermentation strategies were applied, pulse-based 
fed-batch or continuous feeding fed-batch, and evalu-
ated. More specifically, the impact of plasmid expres-
sion levels of the recombinant protein was investigated 
through eGFP single-cell fluorescence.

Materials and methods
Strain, plasmids and media
Strains
The expression strain used in this study was Cupri-
avidus necator Re2133 (Budde et  al. 2011). This strain 
was derived from the wildtype strain C. necator H16/
ATCC17699, whose PHB production pathway was 

deleted (acetoacetyl-CoA reductases, phaB1B2B3; PHA 
synthase, phaC1). Cupriavidus necator Re2133 was gen-
tamicin resistant (GenR). Plasmid constructions were 
achieved through the strains Escherichia coli S17-1 and 
Top10.

Plasmids
The plasmids pCB1 and pCB3 were used in this work. 
The design and associated molecular biology protocols 
for the construction of the plasmid pCB1 were explained 
in more details in Boy et  al. (2020). The plasmid pCB3 
was constructed following the same methodology, from 
the plasmid backbone pBBAD-Par. The plasmid pCB3 
encodes for the Post-Segregational Killing (abbr. PSK) 
system hok/sok. Both plasmids encode for the Plac-eGFP 
cassette and for kanamycin resistance (KanR).

Media
The rich media used for precultures were Tryptic Soy 
Broth (TSB, Becton Dickinson, Sparks, MD, USA) 
for liquid cultures and Tryptic Soy Agar (abbr. TSA, 
TSB + 20  g·L−1 agar) for Petri dishes. Gentamicin 
(10  mg·L−1) and kanamycin (200  mg·L−1) were added 
in theses media. Lysogeny broth medium (abbr. LB) was 
used for molecular biology as described in Boy et  al. 
(2020).

The mineral medium used for flasks cultivation was 
previously described in Lu et al. (Lu et al. 2013) and Boy 
et al. (2020). To maintain selection pressure, gentamicin 
(10 mg·L−1) and kanamycin (200 mg·L−1) were added in 
the mineral medium.

The mineral medium used for bioreactor cultivation 
was composed as follows (per liter): (NH4)2SO4, 2.8  g; 
MgSO4-7H2O, 0.75  g; phosphorus (Na2HPO4-12H2O, 
1.5  g; KH2PO4, 0.25  g); nitrilotriacetic acid, 0.285  g; 
ammonium iron(III) citrate (28%), 0.09  g; CaCl2, 
0.015  g; trace elements (H3BO3, 0.45  mg; CoCl2-6H2O, 
0.3  mg; ZnSO4,7H2O, 0.15  mg; MnCl2-4H2O, 0.045  mg; 
Na2MoO4-2H2O, 0.045  mg; NiCl2-6H2O, 0.03  mg; 
CuSO4, 0.015  mg). Fructose was used as sole carbon 
source with an initial concentration of 50  g·L−1 for the 
culture with pulses and 30  g·L−1 for the culture with 
continuous feeding. For experiments containing kana-
mycin as selection pressure, 100  mg·L−1 of kanamycin 
was added in the medium at inoculation and every 10 
gCDW·L−1 of biomass produced.

Precultures on fructose
Precultures were achieved as previously described in Boy 
et al. (2020).
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Fed‑batch cultivations on fructose
Batch cultivations consisted in non-limited growth on 
fructose at 30 °C and pH7. The set-up (regulation, moni-
toring) described in Boy et al. (2020) was used.

Fed-batch phases were initiated when nitrogen exhaus-
tion was reached in the bioreactor mineral medium (i.e. 
corresponding to 5 gCDW·L−1 biomass). Nitrogen (ammo-
nium, NH4

+) was the limiting substrate and was fed in the 
bioreactor through calibrated peristaltic pumps with an 
exponential flow rate set at 0.04 h−1. This growth rate was 
chosen based on previous works to investigate isopro-
panol producing conditions, with fructose pulse feeding 
strategy (Marc et  al. 2017). Initial fructose concentra-
tion was equal to 50 g·L−1 for the culture with pulses and 
30 g·L−1 for the culture with continuous feeding.

In that specific work, two fedbatch strategies were 
carried out for fructose feeding in order to evaluate the 
impact of pulses versus smooth continuous feeding:

(1)	 Fructose pulse strategy: when fructose concentra-
tion reached 20 g·L−1 in the bioreactor, a pulse was 
performed to reach 50 g·L−1 of fructose.

(2)	 Controlled feeding strategy: when fructose con-
centration reached 20 g·L−1, fructose was fed expo-
nentially in the bioreactor to maintain a constant 
residual concentration of 20 g·L−1.

To prevent nutrient limitation, a phosphorus solution 
(7 mL·L−1) and a trace elements solution (2 mL·L−1) were 
added every 10 gCDW·L−1 of biomass produced. Plus, to 
maintain selection pressure, a kanamycin solution at 50 
g·L−1 was also added (2 mL·L−1) every 10 gCDW·L−1.

Analytical procedures
Biomass characterization
Biomass concentration was measured by optical den-
sity (OD) at 600  nm using a visible spectrophotometer 
(DR3900, Hachlange, Loveland, Colorado, USA) with a 
0.2 cm path length absorption cell (Hellma). OD was cor-
related to cell dry weight (CDW) measurements (i.e. 2 
gCDW·L−1 = 1 OD unit), as described in Boy et al. (2020). 
The results of biomass determinations were reproducible 
within 5% in replicate assays.

Metabolite quantification
Cells samples were centrifuged, and supernatants were 
filtrated (0.2 μm PTFE syringe filters, VWR) before being 
used for substrate and products determination. The 
residual fructose and organic acids concentrations were 
quantified by high-performance liquid chromatography 
(HPLC). The HPLC instrument (Series 1100, Agilent) 
was equipped with an ion-exchange column (Aminex 

HPX-87H, 300 × 7.8  mm, Bio-Rad, Hercules, CA, USA) 
protected with a guard column (Cation H+ cartridge, 
30 × 4.6 mm, Bio-Rad) and coupled to a RI detector and 
an UV detector (λ = 210  nm). The column was eluted 
with 2.5 mM H2SO4 as a mobile phase at 50 °C at a flow 
rate of.

0.5  mL·min−1. Residual nitrogen was quantified by 
higher-pressure ionic chromatography (HPIC). The HPIC 
instrument (ICS-2100 RFIC, Dionex) was equipped with 
an IonPac™ CS16 column (RFIC™, 3 × 50  mm, BioRad) 
and an ion suppressor CERS 500 (2  mm, Thermo Sci-
entific). The column was eluted with 30 mM metanesul-
fonic acid as a mobile phase at 40  °C and a 40  mA ion 
suppressor current, at a flow rate of 0.36 mL·min−1. The 
systematic error in the quantification of metabolites was 
determined to be less than 5% from replicates.

Plate count
Plasmid stability was quantified by parallel plate count on 
antibiotic selective TSB Petri dishes (10  mg·L−1 Gen-
tamicin and 10 mg·L−1 Gentamicin + 200 mg·L−1 Kana-
mycin). Serial dilutions were performed in physiological 
water (0.85% NaCl) tubes (BioMérieux, Marcy-l’Étoile, 
France). For every sample, three dilutions were tested, 
between 10–5 and 10–9. The diluted sample were plated in 
triplicate with the Whitley Automated Spiral Plater (Don 
Whitley Scientific, Shipley, UK). Decimal reduction rate 
from plate count measurements was calculated as: 
N = log

(

GenRcells
GenRKanrcells

)

.

Flow cytometry
The BD Accuri C6® flow cytometer (BD Biosciences, 
Franklin Lakes, NJ, USA) was used to measure cell per-
meability to propidium iodide (FL3 channel) and eGFP-
fluorescence of plasmid-expressing cells (FL1 channel). 
Cell samples were diluted in physiological solution at 106 
cells·mL−1 and then, were stained with 20 µL of a com-
mercial solution of propidium iodide at 20 mg L−1 (abbr. 
PI) (Molecular Probes, Invitrogen, USA) and incubated 
20 min at room temperature in the dark. A 100% dead–
cell control was prepared by incubating cells in 70% iso-
propanol for 1 h at room temperature. Samples were run 
until 20, 000 events were counted at 14 μL·min−1 using 
milli-Q water as sheath fluid. The Forward Scatter Signal 
(threshold: 12, 000) and Side Scatter Signal (threshold: 2, 
000) were used as trigger channels. Data acquisition was 
performed with BD Accuri CFlow® software and data 
processing was achieved with FlowJo software (Becton 
Dickinson, Sparks, MD, USA). Decimal reduction rate 
was calculated as described above from plasmid-express-
ing cells (eGFP-positive cells, FL1-A > 8·102) and total 
cells (Single cells, bisectors of both FCS-A vs FSC-H and 
SSC-A vs SSC-H): N = log

(

Single−cells
eGFP−cells

)

.
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Extracellular fluorescence measurement
Extracellular fluorescence measurements were achieved 
as described in Boy et al. (2020). Relative extracellular flu-
orescence intensity was calculated as: RFU =

FUt−FUt0
ODt−ODt0

.

Data analysis
Specific substrate consumption (fructose qS , ammo-
nium qN ) and biomass production ( µ ) rates were calcu-
lated from experimental data and mass balances (carbon, 
nitrogen and elemental). Specific growth rate was deter-
mined as ln (X) = f (t) and its error was calculated as the 
standard deviation of the slope. Determination of spe-
cific oxygen consumption ( qO2

 ) and carbon dioxide pro-
duction ( qCO2

 ) was based on mass balance calculations 
in both liquid and gaseous phase, from inlet/outlet gas 
composition, temperature, pH, stirring, oxygen partial 
pressure (pO2), and liquid volume. For overall produc-
tion/consumption yield calculation, masses were plotted 
pairwise in a scatter plot. A linear regression was used to 
determine the considered yields and the error was calcu-
lated by the standard deviation of the slope.

Statistical analysis: normality of distribution functions 
by BoxPlot representation
Boxplots represented distributions through graphical 
localization parameters, such as the median (50th per-
centile), the first (25th percentile) and third quartiles 
(75th percentile). The first and third quartiles represented 
the bottom and top of the boxplot, respectively. The line 
inside the box symbolized to the median. The interquar-
tile range (abbr. IQR) corresponded to the length of the 
boxplot and was situated between the first and third 
quartiles. The whiskers symbolized the minimum and 
maximum values, when comprised within 1.5 × IQR 
from both extremities. Outliers, above 1.5 × IQR, were 
represented by points. A boxplot symmetrically centered 
on the median might be expected to be normally distrib-
uted (Rakotomalala 2011).

Results
Impact of fructose feeding strategy
In order to evaluate whether fluctuating nutrient envi-
ronment may impact the strain robustness (defined as 
plasmid expression stability, cultivability, membrane 
integrity and macroscopic cell behavior of engineered 
C. necator strains), two different sugar feeding strategies 
were carried out. Nitrogen-limited fed-batch cultures 
were performed by implementing either a pulse-based 
fructose feeding or a continuous fructose feeding. The 
plasmid monitoring system developed in Boy et  al. 
(2020), based on the expression of eGFP by plasmid-
bearing cells was used. The pCB1 strain was grown under 

selection pressure (i.e. 100 mg·L−1 kanamycin addition at 
inoculation and every 10 gCDW·L−1 of biomass produced).

Growth kinetics characteristics
Carbon, nitrogen and elemental balances were checked 
and completed at least at 90% for both cultures. A final 
biomass production (Fig.  1a, b) of 137  g for pulses and 
210  g for continuous feeding was obtained. The global 
biomass production yields from fructose were equal to 
0.28 ± 0.01 gX·gS

−1 and 0.32 ± 0.01 gX·gS
−1 for pulse and 

continuous feeding, respectively (Table  1). No organic 
acid, other than pyruvate, was produced during culture 
with continuous fructose feeding. A slight transient peak 
of pyruvate was detected after the initiation of the fed-
bath phase once nitrogen was exhausted for both con-
ditions, at 4.96  g for continuous feeding and 4.86  g for 
pulses. However, other organic acids were produced only 
during the culture with fructose pulses (Fig.  2): citrate, 
acetate, aceto-acetate and succinate to a lesser extent. 
This production represented 15% of the carbon flow dur-
ing fed-batch culture. For acetate and succinate, the mass 
produced increased continuously from the beginning of 
the fed-batch phase; but, for acetate only until biomass 
started slowing down. For aceto-acetate, production was 
very noisy and started at the beginning of the fed-batch 
phase. For citrate, three peaks of production could be 
observed, after the beginning of the nitrogen–limited 
phase and after the first two fructose pulses. However, it 
was re-consumed after each pulse and represented less 
than 1% of the carbon flow.

During batch phase, the specific growth rates for both 
conditions were equal to 0.25 ± 0.01 h−1 and.

0.22 ± 0.01  h−1, respectively with the initial fruc-
tose concentration at 30 and 50 g·L−1 (Fig. 1c, d). Then, 
growth dynamics were imposed by the nitrogen feeding 
rates around 0.04  h−1 for both culture condition dur-
ing fed-batch phase. The number of cell generations 
produced was 7 with fructose pulse and 8 with con-
tinuous feeding. With fructose pulses, growth slowed 
down after 65  h, just after the third fructose pulse, and 
stopped at 7.25 generations (80  h) (Fig.  1a, c). During 
fed-batch phase for continuous feeding, fructose con-
sumption rate was close to 0.14 ± 0.03 gS·gX

−1·h−1. For 
pulse feeding, fructose consumption rate increased in 
response to every fructose addition and then stabilized 
around 0.15 gS·gX

−1·h−1 in-between pulses. Meanwhile, 
ammonium consumption rate was close to 0.006 ± 0.001 
gNH3·gX

−1·h−1 with fructose pulse and to 0.008 ± 0.004 
gNH3·gX

−1·h−1 for continuous feeding (Fig.  1c, d). Dur-
ing the pulse experiment, ammonium consumption rate 
dropped just after the third fructose pulse (Fig. 1c).
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The respiratory quotient (abbr. RQ) was stable around 
1.13 ± 0.03 during fed-batch phase (20—90 h) for contin-
uous feeding (Fig. 1f; Table 1). Specific CO2 production 
and O2 consumption rates were comprised around.

2.81 ± 0.57 and 2.48 ± 0.49 mmol·g−1·h−1, respectively. 
For fructose pulses during fed-batch, respiratory quotient 
seemed to transiently decrease in response to fructose 
pulses, until the third fructose pulse where it constantly 
decreased to 0.7 (Fig.  1e; Table 1). On this time period, 
such a decrease in the RQ might be explained by the pro-
duction of organic acids due to their more oxidized nature 
(i.e. degrees of reduction of 3.0 for citric and acetoacetic 

acids, 3.33 for pyruvic and 3.5 for succinic compared to 
4.2 for biomass) when growth had stopped (theoreti-
cal RQ at 1.06 for growth only). CO2 specific production 
rate and O2 specific consumption rate were comprised 
around 2.41 ± 0.30 and 2.14 ± 0.22 mmol·g−1·h−1, respec-
tively; a slight increase in carbon dioxide production rate 
was detected after the two first pulses.

Single‑cell analysis of plasmid expression levels
Single-cell analysis was supported by flow cytometry 
data, and plasmid expression levels analysis by both plate 
count and flow cytometry measurements. All these data 
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were studied in light of physiological measurements (i.e. 
cell permeability measured by PI staining).

During batch phase, the cell permeability percent-
age (Fig.  3a, b) was low (below 5%) for both conducts. 

Meanwhile, relative extracellular fluorescence intensi-
ties were weak between 100–200 RFU, in all tested con-
ditions. An increase was observed at nitrogen depletion 
for both experiments (6 and 8%). In fed-batch phase, 

Table 1  Summary of macroscopic data for the strains Re2133/pCB1 (with or without kanamycin; with pulse or continuous fructose 
feeding) and pCB3

Strains µ RS/X RNH3/X RS/CO2 By-products RQ qCO2 qO2

(h−1) (gX·gS
−1) (gX·gNH3

−1) (gCO2·gS
−1) (mmol·gX

−1·h−1) (mmol·gX
−1·h−1)

Re2133/
pCB1 + Kan
Pulse feeding

0.25 ± 0.01 0.28 ± 0.01 6.6 ± 0.2 0.74 ± 0.01 acetate, suc-
cinate, aceto-
acetate, 
citrate

1.12 ± 0.08 2.41 ± 0.30 2.14 ± 0.22

Re2133/
pCB1 + Kan
Continuous feeding

0.22 ± 0.01 0.32 ± 0.01 5.4 ± 0.2 0.85 ± 0.02 none 1.13 ± 0.03 2.81 ± 0.57 2.48 ± 0.49

Re2133/pCB1
Continuous feeding

0.24 ± 0.01 0.32 ± 0.01 5.60 ± 0.08 0.89 ± 0.02 none 1.05 ± 0.06 2.14 ± 0.23 2.05 ± 0.24

Re2133/pCB3
Continuous feeding

0.20 ± 0.01 0.32 ± 0.01 5.21 ± 0.41 0.87 ± 0.02 none 1.14 ± 0.02 2.10 ± 0.40 1.84 ± 0.30

Reference (Aragao 
et al. 1996)

0.53 5.96 0.51
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Fig. 2  Organic acids production during fructose pulses: acetate (a: ■), succinate (b:  ▽), citrate (c: ●), and aceto-acetate (d: ▲). Black vertical lines 
represent the beginning of the fed-batch phase and orange vertical lines represent fructose pulses. Purple arrows represent additions (kanamycin, 
100 mg·L−1; elements and phosphorus solutions)
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the percentage of permeabilized cells was overall higher 
when driving by pulse (10–20%) than by continuous 
feeding (5–10%). Furthermore, a clear difference was 
observed after the third addition of fructose when the 
percentage of permeabilized cells rose to 20% while it 
remained below 10% with continuously feeding. Thus, 
linked to permeability increase, the relative extracellular 
fluorescence intensity was higher in the pulse mode and 
increased all along the culture, up to 619 RFU. In the con-
tinuously fed reactor, relative extracellular fluorescence 
intensity was kept more stable compared to fructose 
pulses, as the percentage of permeabilized cells remained 
closer to a constant, suggesting equilibrium between new 
formed cells by growth and permeabilized ones.

Boxplots representing single-cell fluorescence intensity 
distribution within the population were globally wider 
in the pulse mode during fructose addition (Fig.  3c), 
especially in the direction of the first quartile. The fluo-
rescence intensity distribution was close to normal (i.e. 
median = mean and first quartile length = third quar-
tile length) for continuous fructose feeding (until 50  h, 
Fig.  3d) and during pulses (until 30  h, Fig.  3c); even 
if there was a slight heterogeneity at the outliers (i.e. 
extreme values, 5 and 95% of the distribution) in con-
tinuous feeding (Fig.  3d). After that, distribution range 
increased for both feeding strategies. After 60  h of cul-
ture, boxplots presented a wider and non-Gaussian dis-
tribution range for all culture conditions. Distribution 
ranges were noisier for continuous feeding compared to 
pulse feeding when growth had stopped.

With pulse feeding, the decimal reduction rates 
(Fig.  3e) increased significantly at 55  h (by flow cytom-
etry) and 70 h (by plate count), respectively after the sec-
ond and third fructose pulses. With continuous fructose 
feeding (Fig. 3f ), decimal reduction rates (for flow cytom-
etry and plate count) were low and not significant (< 0.2) 
throughout the culture.

The continuous fructose feeding strategy allowed both 
slightly more stable plasmid expression levels and a sig-
nificant more efficient macroscopic behavior in terms of 
cell permeability and overall production yields, compared 
to pulse fructose feeding. Thus, the continuous strategy 
was retained for the fed-batch cultures in order to inves-
tigate the different plasmid stabilization systems.

Impact of plasmid stabilization systems
In order to assess the efficiency of plasmid stabiliza-
tion systems in maintaining strain robustness, fed-batch 
experiments were carried out with strains expressing 
two different plasmid stabilization systems. Kanamycin 
resistance (strain Re2133/pCB1) and Post-Segregational 
Killing system hok/sok (strain Re2133/pCB3) were evalu-
ated based on their contribution to strain robustness: 

macroscopic, physiological behavior and expression sta-
bility. Fed-batch experiments were carried out following 
the strategy described above with continuous fructose 
feeding.

Systems based on plasmid‑encoded antibiotic resistance
The plasmid stabilization system based on kanamycin 
resistance was expressed in a constitutive manner on the 
strain Re2133/pCB1. Fed-batch cultures with and with-
out kanamycin selection pressure were implemented. 
Kanamycin (100  mg·L−1) was added at inoculation and 
every 10 gCDW·L−1 of biomass produced.

Growth kinetics characteristics
For both fermentation conditions, carbon, nitrogen and 
elemental balances closed above 95%. Final biomass 
production reached for both strains was 178 g without 
antibiotic and 210  g with kanamycin after 8 cell gen-
erations (Fig.  4a, b). In order to evaluate differences 
in terms of carbon, nitrogen and oxygen repartition 
according to the plasmid management, overall yields 
were calculated and compared to the theoretical values. 
There was no difference in the values of overall yields 
measured between the batch phase and the fed-batch 
phase in both culture conditions. Both overall growth 
yields were equal to 0.32 ± 0.01 gX·gS

−1, a 40% decrease 
compared to the theoretical biomass production yield 
from fructose (0.53 gX·gS

−1 (Aragao 1996)) (Table  1). 
This decrease in biomass overall yield from fructose 
was due to diversion of the carbon flow toward CO2 
production in our culture conditions. Its overall yield 
from fructose was always comprised in the same order 
of magnitude at 0.89 ± 0.02 gCO2·gS

−1 and 0.85 ± 0.02 
for gCO2·gS

−1 without and with kanamycin, respectively 
(Table 1). No organic acids were produced during both 
cultures, except pyruvate produced transiently after the 
beginning of the fed-batch phase when nitrogen was 
exhausted then quickly consumed. For nitrogen, over-
all biomass production from ammonium was equal to 
5.60 ± 0.08 gX·gNH3

−1 without antibiotic and 5.40 ± 0.20 
gX·gNH3

−1 with kanamycin (Table  1). This difference 
appears non-significant based on the value of the 
standard deviation between the two culture conditions. 
Nevertheless, these yields were 6 to 9% lower than the 
theoretical one (5.96 gX·gNH3

−1).
During batch phase (Figs.  4d, e), nitrogen limita-

tion occurred when the biomass concentration reached 
4 gCDW·L−1. For the strain C. necator Re2133/pCB1, 
the specific growth rate reached 0.22 ± 0.01  h−1 and 
0.24 ± 0.01  h−1, with and without kanamycin respec-
tively. During fed-batch phase, growth dynamics were 
imposed by the nitrogen feeding rates around 0.04  h−1 
for both culture conditions. Specific consumption rates 
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of fructose and ammonium during fed-batch phase were 
overall slightly higher with kanamycin addition; but, 
decreased all along fed-batch phase.

The respiratory quotient was stable around 1.05 ± 0.06 
during fed-batch phase (20—90  h) without antibiotic 
(Fig.  4g; Table  1). Meanwhile, the respiratory quotient 
with kanamycin was stable around 1.13 ± 0.03 during 
fed-batch phase (20—90 h). (Fig. 4h; Table 1).

Single cell analysis
In all culture conditions, an increase in the permeabilized 
cells percentage was observed just after the beginning 
of the fed-batch phases; slight with kanamycin addi-
tion (2 to 5%) and more important without it (2 to 10%) 

(Fig. 5a, b). This could be explained as a direct answer to 
the transient nitrogen depletion that cells face at the end 
of the batch phase. For the strain Re2133/pCB1 without 
kanamycin, the value of permeabilized cells was higher, 
because a slightly longer starvation phase (i.e. 3 h instead 
of less than 1 h) before nitrogen was fed exponentially in 
the medium. At the end of the fed-batch phase, the maxi-
mum percentage of permeabilized cells was higher in 
presence of kanamycin, with 15% instead of 5% without 
selection pressure, both at 170  g of biomass produced. 
Relative extracellular fluorescence intensity increased 
mainly after the beginning of the fed-batch phase for 
both culture conditions and remained quite constant 
along the cultures. During fed-batch phase, its value was 
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Fig. 3  Relative extracellular fluorescence intensity (FU/ODintact) ( ) and percentage of permeabilized cells ( ) in the FL3-A channel for Re2133/
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channel for Re2133/pCB1 with kanamycin: with fructose pulse (c) and continuous feeding (d). Evolution of the decimal reduction rate for Re2133/
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(kanamycin, 100 mg·L−1; elements and phosphorus solutions)
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close to 175 RFU and 200 RFU with and without kana-
mycin addition, respectively and its evolution roughly 
followed the curve of the percentage of permeabilized 
cells for both culture conditions.

Intracellular eGFP distribution was represented by 
boxplots to highlight fluorescence intensity distribution 
at the single-cell level throughout fermentation. Box-
plot distribution was close to normal during most of 
the batch phase for both culture conditions (Fig.  5d, e). 
There was a slight heterogeneity at the level of the out-
liers (i.e. extreme values, under 5 and above 95% of the 
total distribution) for kanamycin addition (Fig. 5e). After 
the beginning of the fed-batch phase, boxplot distribu-
tion range increased. Without antibiotic, the distribution 
range returned to a normal configuration after 55 h and 
until the end of the culture. With kanamycin, the boxplot 
distribution range was close to normal until 50  h, even 

if extreme values were rather low. After that timepoint, 
the distribution profile increased and boxplots were not 
normal anymore.

To evaluate plasmid expression loss, decimal reduc-
tion rate was calculated from two counting methods: 
traditional plate count method based on expression of 
kanamycin resistance encoded on the plasmid, and eGFP 
biosensor monitoring method (Fig. 5g, h). Only data from 
flow cytometry were shown here, as they were similar to 
results from plate count. Decimal reduction rate was low 
for all strains and culture conditions tested, and plasmid 
stability loss was very slight.

So, the widening in plasmid expression level distribu-
tion might be due to two phenomena: (1) the increase in 
the percentage of permeabilized cells and eGFP leakage 
(i.e. PI-positive cells; either eGFP-positive or -negative) 
compared to the non-selective condition, and (2) a very 
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slight plasmid expression loss (i.e. eGFP-negative and PI-
negative cells).

Plasmid stabilization system based on kanamycin 
resistance (with kanamycin addition) was accompanied 
by an higher heterogeneity in the plasmid expression 
level, as seen through boxplots, and induced a slight 
increase of permeabilization percentage of cells after 
80 h. Nevertheless, plasmid stability was maintained dur-
ing 8 cells generations even without addition of selection 
pressure.

System based on plasmid‑encoded Post Segregational Killing 
System
The second plasmid stabilization system tested was based 
on the expression of a toxin/anti toxin system (hok/sok) 

which was expressed in a constitutive manner on the 
pCB3 plasmid.

Growth kinetics characteristics
Carbon, nitrogen and elemental balances were recov-
ered (> 95%). Final biomass production reached for 
pCB3 with 173 g over 8.16 generations was close to those 
obtained for pCB1 without kanamycin addition, consid-
ered as reference culture (Fig. 4a, c; Table 1). Like stated 
beforehand, there was no difference between the values 
of overall yields measured between the batch phase and 
the fed-batch phase. Concerning biomass production 
from fructose, the overall yield for pCB3 was equal to 
0.32 ± 0.01 gX·gS

−1 similar to the one obtained for pCB1. 
CO2 production from biomass was equal to 0.87 ± 0.02 
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gCO2·gS
−1 for pCB3. Like for pCB1, biomass overall yield 

was decreased in the benefit of CO2 production.
No organic acids were produced during the experi-

ment. There was a transient pyruvate production after 
the beginning of the fed-batch phase with 9 g for pCB3, 
which was quickly consumed. The overall biomass pro-
duction from nitrogen yield 5.21 ± 0.41 gX·gNH3

−1 for 
pCB3 was comparable to pCB1. This difference appears 
non-significant based on the value of the standard devia-
tion. Experimental data presented a 6 to 12.5% decrease 
compared to the theoretical biomass production yield 
from ammonium (5.96 ± 0.41 gX·gNH3

−1).
During batch phase, the maximum growth rate reached 

was 0.20 ± 0.01 h−1 for Re2133/pCB3 and 0.24 ± 0.01 h−1 
for Re2133/pCB1 (Fig.  4d, f; Table  1). During the fed-
batch phase, the specific growth rate applied was 
0.04 ± 0.01  h−1 for pCB1 and 0.03 ± 0.01  h−1 for pCB3. 
There was no significant difference in the fed-batch mon-
itoring strategy based on the growth rate imposed by the 
nitrogen feeding. For both strains, fructose and ammo-
nium consumption rates were close during fed-batch 
phases.

For pCB3, the respiratory quotient was stable around 
1.14 ± 0.02, all along the fed-batch phase (Fig.  4g, 
i; Table  1). Specific CO2 production and O2 con-
sumption rates were stable around 2.10 ± 0.40 and 
1.84 ± 0.30 mmol·gX

−1·h−1, respectively.

Single‑cell analysis
In all culture conditions, an increase in permeabilized 
cells percentage was observed just after the beginning of 
the fed-batch phase (Fig. 5a, c). This could be explained 
by the transient nitrogen depletion at the end of the 
batch phase. During the fed-batch phase, the percent-
age of permeabilized cells kept on increasing for pCB3 
up to 13%, while the value remained stable around 3% for 
pCB1. During fed-batch phase, relative extracellular fluo-
rescence in the supernatant was stable around 200 RFU 
for pCB1 and it increased continuously from 200 to 470 
RFU for pCB3 and seemed to be correlated to permea-
bility increase. However, the last two points for Re2133/
pCB3 have to be considered with caution as optical den-
sity decreased because of cell lysis, as confirmed in cyto-
grams (data not shown).

A comparison of plasmid expression level between 
our reference strain Re2133/pCB1 and Re2133/pCB3 
strain carrying the PSK system was carried out. Regard-
ing flow cytometry distributions (Figs.  5d, f ), both 
strains presented a similar fluorescence intensity distri-
bution that was normal and stable through batch phase. 
At the beginning of the fed-batch, boxplots distribution 
ranges for pCB1 were significantly more disrupted than 
with pCB3. After 60  h culture up to the end, boxplot 

distribution ranges for pCB3 were wider in direction of 
the first quartile. This was consistent with the increased 
relative extracellular fluorescence intensity observed for 
pCB3 beforehand, as permeable cells presented lower flu-
orescence intensity (data not shown). Therefore, higher 
permeabilization percentage led to increased eGFP leak-
age, to higher relative extracellular fluorescence intensity, 
and to wider boxplots distribution ranges.

The decimal reduction rates measured by plate count 
and flow cytometry data (Fig. 5g, i) for both pCB1 and for 
pCB3 through time were not significant and no plasmid 
loss was detected.

Discussion
The aim of this work was to assess robustness of engi-
neered strains under nitrogen-limited fed-batch cultures 
with C. necator. Strain robustness was studied under 
two sugar feeding strategies (pulses and continuous) 
and with two plasmid stabilization systems (kanamycin 
resistance and Post-Segregational Killing hok/sok). Strain 
robustness was defined as the ability of cells to main-
tain homogenous growth, production performances and 
plasmid expression levels, among individuals over a long 
period of culture and was evaluated via plasmid expres-
sion stability, cultivability, membrane integrity and mac-
roscopic cell behavior.

Traditionally, substrate feeding strategy for fed batches 
can be carried out either by continuous feeding requir-
ing programmable pumps or easily by pulse addition. In 
previous works, the two strategies were applied with C. 
necator, the pulse-based strategy for fructose feeding was 
applied for the production of isopropanol (Marc et  al. 
2017) and the continuous strategy (maintain at 20 g·L−1) 
was led during alka(e)ne production (Crepin et al. 2016); 
both in nitrogen limited fed-batch mode. It is well-known 
that sugar-pulsed strategy led to fluctuating environ-
ments, which may reduce process performance and strain 
robustness, as reported in some studies (Hewitt et  al. 
2007; Lara et al. 2006; Limberg et al. 2017). In E. coli, high 
glucose pulses might be accompanied by an overflow 
metabolism in strict aerobic conditions, which might 
lead to acetate production (Lara et  al. 2009; Neubauer 
and Junne 2010). High substrate concentrations in the 
feeding zone during pulses might also lead to enhanced 
respiratory activity and so, to dissolved oxygen depletion 
(Lara et al. 2006). In this case, under oxygen limitation, a 
fermentative metabolism might occur and divert carbon 
flow toward acetate, formate and ethanol productions 
(Lara et  al. 2009; Neubauer and Junne 2010). If organic 
acids are produced in high enough concentrations, pH 
decrease might also occur locally in the feeding zone. All 
these phenomena might lead to strain robustness dis-
ruption. In this work, a continuous feeding strategy was 
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applied during the culture of the strain Re2133/pCB1 
under selective pressure and results were compared to 
pulse-feeding strategy, in terms of strain robustness.

No significant impact was observed on the specific 
growth rate or on overall production yields, as a result 
of the difference in the initial fructose concentration (30 
vs. 50 g·L−1) during the batch phase (0.25 ± 0.01  h−1 for 
pulse feeding and 0.22 ± 0.01 h−1 for continuous feeding). 
During the fed-batch phase, the growth was dictated by 
the dynamics of the nitrogen-feeding conduct and was 
equal for both feeding strategies. The global biomass pro-
duction yields on fructose were found higher in the con-
tinuously fructose feeding strategy. No organic acid was 
detected with continuous feeding, whereas organic acid 
production occurred in the pulse experiment, represent-
ing up to 15% of the consumed carbon. Therefore, organic 
acids and growth competed for the carbon. Pyruvate was 
transiently produced after nitrogen depletion and re-con-
sumed for both fructose feeding strategies. This transient 
phenomenon might likely be due to a carbon overflow at 
the onset of nitrogen limitation as previously reported 
in engineered C. necator strains (Crepin et  al. 2016; 
Marc et  al. 2017). The explanations for the production 
of citrate, acetoacetate and acetate are given as follows. 
First, the production of citric acid was reported during 
fed-batch cultures with alka(e)ne engineered C. necator 
strains (Crepin et  al. 2016). However, quantities meas-
ured during alka(e)ne production were lower (1 g·L−1 on 
fructose; 2  g·L−1 on CO2) than the ones determined in 
this work with pulse feeding (max. 20 g, corresponding to 
6.7 g·L−1). The accumulation of citrate could be explained 
by a disruption in the TCA cycle via the inhibition of aco-
nitase. Nitrogen limitation is known to inhibit aconitase’s 
activity in some oleaginous microorganisms, leading 
to citrate excretion (Evans and Ratledge 1984; Ratledge 
2002). As a natural producer of PHB, C. necator could, to 
some extent, follow the patterns of metabolic regulation 
of oleaginous microorganisms, which might be favored 
under alka(e)ne production or with fructose excess under 
nitrogen-limited culture conditions. Second, the accu-
mulation of acetoacetate during fed-batch phase might 
be due to the redirection of the carbon flow from acetyl-
CoA toward the biosynthesis of PHB. As this pathway has 
been deleted in the C. necator Re2133 strain downstream 
of the acetoacetyl-coA, aceto-acetate was likely produced 
by the acetoacetyl-CoA transferase that is naturally pre-
sent in C. necator (Grousseau et  al. 2014). Third, the 
accumulation of acetate coming from the conversion of 
the acetyl-CoA via phosphate acetyltransferase—acetate 
kinase pathway has already been reported in the PHB–
deleted strains and engineered strains (Crepin et al. 2016) 
or in response to oxygen limitation (Tang et al. 2020).

C. necator presents a natural carbon overflow metabo-
lism toward the production of PHB in conditions of nutri-
tional limitation (e.g. nitrogen, phosphate), which can 
represent up to 80% of its dry cell mass (Ryu et al. 1997). 
However, as said above, the PHB biosynthesis pathway 
was deleted in our strain. One might hypothesize that 
with fructose pulses under sugar fluctuating conditions, 
the transitory excess carbon flow was re-directed toward 
the production of organic acids. In Marc et al. (2017), no 
organic acids were produced during the same nitrogen-
limited phase with fructose pulses. Therefore, in isopro-
panol engineered strains, the redirection of this carbon 
overflow was probably totally drawn by the isopropanol 
biosynthetic pathway. This was not the case for alka(e)ne 
production in C. necator, where the amount of organic 
acids produced during fed-batch increased with continu-
ous fructose feeding (Crepin et  al. 2016). The efficiency 
of the carbon flow redirection logically depends on the 
design of the synthetic pathway.

The percentage of PI-permeabilized cells was glob-
ally higher during fructose pulse feeding. This increase 
in cell permeability was correlated with higher rela-
tive extracellular fluorescence intensity, due to higher 
eGFP leakage outside the cells. The main effect of higher 
sugar concentrations on microbes is osmotic shock, 
since water diffuses through membranes as a response 
of increased osmotic pressure. Therefore, water activ-
ity decreases in cells (Lengeler 1998; Parish 2006). As a 
result, enzyme activity might be disrupted, which could 
lead to a weakening of DNA structure, growth inhibi-
tion or cell permeabilization (Parish 2006). The response 
toward high sugar concentrations highly depends on the 
microorganism (Kushner 1964). A promoter inducible 
by carbon starvation (csiE) has been used to control GFP 
expression in E. coli (Delvigne et al. 2011a,b) to study the 
impact of sugar-mixing imperfections on protein expres-
sion and/or excretion. Three cultivation modes were 
investigated: chemostat, fed-batch and scale down reac-
tor (abbr. SDR, that mimics heterogeneity in large scale 
bioreactors through a recycle loop). GFP excretion in the 
medium was dependent on the nature of stress encoun-
tered by cells in a given bioreactor conduct. During strict 
sugar limitation under prolonged culture conditions in 
chemostat and fed-batch modes, permeabilized cell per-
centage was higher and was correlated to higher GFP 
leakage intensity. Under sugar fluctuating environments, 
in chemostat (switch from batch to chemostat, or abrupt 
changes in dilution rate) and in SDR (glucose gradient in 
recycle loop), GFP excretion was slowed down. Indeed, 
such complex extracellular fluctuations (i.e. transitory 
glucose non-limiting conditions) might have induced an 
overflow metabolism and inactivated the carbon-limi-
tation promoter (csiE). In this case, membrane was in a 
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better state (i.e. low permeability) and this could be due 
to an adaptation of cells to constantly fluctuating envi-
ronments in SDR. GFP leakage was shown to be corre-
lated with higher permeabilization percentages, and so, 
was lower for SDR compared to fed-batch mode. How-
ever, our results were different concerning the impact of 
environmental fluctuations on cell permeability, as cells 
tended to be more permeable under pulse feeding com-
pared to continuous feeding. First, the intensity of sugar 
concentration fluctuations was different, as fructose con-
centrations varied from 20 to 50 g·L−1 in our work, and 
glucose concentrations from 0 to about 1 g·L−1 in Delvi-
gne et  al. (2011a, b). Then, fluctuations occurred more 
regularly in the SDR (every 8 min) than in our fed-batch 
culture (12–18 h in between pulses), which might favor 
the adaptation of cells to fluctuating environments in 
SDR. Finally, cultures conditions were glucose-limited in 
Delvigne et al. (2011a, b), which was not the case in our 
work ([fructose] > 20  g·L−1). Glucose-limitation led to a 
drop of cell viability (i.e. increase in cell permeability, by 
PI-staining) in chemostat, whereas cells adapted to fluc-
tuating culture conditions in SDR.

The decimal reduction rate was considered not sig-
nificant for continuous feeding when calculated by plate 
count and flow cytometry. For pulse feeding, decimal 
reduction rates were low (< 0.2), except after the second 
fructose pulse (0.3 at 55  h by flow cytometry) and the 
third one (0.7 at 70 h by plate count), indicating a slight 
plasmid stability loss. In both culture conditions, the 
majority of cells were plasmid-expressing cells. But they 
presented heterogeneous plasmid expression levels either 
after fructose pulses or after extended culture durations 
under selection pressure. Until 30 h for pulses and 50 h 
for continuous feeding, plasmid expression level distri-
bution could be considered close to normal, according to 
boxplot representation. However, after these moments, 
expression level distributions were noisy until the end of 
fed-batch phase, because of two phenomena. Firstly, in 
both cultures, increased cell permeability was correlated 
with increased eGFP leakage, which contributed to widen 
fluorescence intensity distribution, as permeabilized cells 
presented globally a lower fluorescence intensity. Sec-
ondly, during pulse feeding a slight increase in decimal 
reduction rate was detected (at 55 and 70 h) and might 
reveal a slight loss in plasmid expression level (i.e. wid-
ening of the first quartile) that could impact fluorescence 
intensity distribution.

The continuous fructose feeding strategy which 
allowed homogeneous and stable culture conditions dur-
ing fed-batch phase was selected to pursue strain robust-
ness evaluation. The impact of two plasmid stabilization 
mechanisms on strain robustness was studied: kanamy-
cin resistance and Post-Segregational Killing (PSK) hok/

sok. The reference culture (i.e. Re2133/pCB1 without 
kanamycin addition) and the cultures led under plasmid 
stabilization conditions (i.e. Re2133/pCB1 with kanamy-
cin and pCB3 with PSK system) were compared on their 
impact on macroscopic behavior, plasmid expression lev-
els and cell physiology.

Both plasmid stabilization systems presented close bio-
mass and CO2 production yields from fructose between 
the two stabilization systems. However, there was a sig-
nificant reduction in the biomass production yield from 
fructose compared to the theoretical value. Indeed, 
overall biomass production yield from fructose was 40% 
lower compared to reference value (0.53 gX·gS

−1, Aragao 
et al. 1996) and the missing carbon was deviated toward 
the production of CO2. It is likely due to the presence of 
the plasmid in host cells and to the production of eGFP 
by plasmid-expressing cells.

During fed-batch phase, the permeabilized cell per-
centage decreased and stabilized around 5% for pCB1 
without antibiotic. However, it increased up to 10% for 
pCB1 with kanamycin and up to 15% for pCB3. As a 
result, the strains reached different relative extracellu-
lar fluorescence intensity, from lowest to highest: pCB1, 
pCB1 with kanamycin and pCB3. It appears that stabili-
zation systems (kanamycin resistance and PSK system) 
led to an increase in eGFP leakage outside of cells. The 
distribution profiles of fluorescence at the single-cell 
level widen at the end of culture (i.e. stably for pCB3 and 
noisy for pCB1 + kanamycin), when relative extracellular 
fluorescence intensity and percentage of permeabiliza-
tion increased, for plasmid stabilization systems. Plasmid 
expression levels were more stable throughout culture for 
the strain Re2133/pCB3, especially at the beginning of 
the fed-batch phase compared to the strain Re2133 with 
and without kanamycin. Therefore, Re2133/pCB3 pre-
sented an advantage in terms of strain robustness com-
pared to the strain Re2133/pCB1 all along the culture, 
based on more homogeneous plasmid expression levels 
at nitrogen depletion and until 60 h of culture. Maintain-
ing plasmid expression levels without the use of antibiot-
ics (with PSK hok/sok) might be interesting to avoid their 
addition in cultures at industrial scale, to decrease the 
economic cost of the bioprocess and the risk of multid-
rug resistance issue. We can precise that the intracellular 
fluorescence intensity distribution and the levels of extra-
cellular fluorescence intensity in the medium (eGFP leak-
age) reached in this study were far lower than the values 
reached in our previous work (Boy et al. 2020) with the 
strain Re2133/pKRSF1010-Pj5-eGFP in flasks (i.e. eGFP 
constitutively induced by the strong promoter Pj5). Thus, 
eGFP leakage in this work was not due to a too high 
intracellular fluorescence intensity that the host cells 
would not be able to cope with.
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For all fermentation conditions, plate count and flow 
cytometry measurements gave comparable cell number 
for the total cell population and the plasmid expressing 
cells population. So, neither of the plasmid stabilization 
system studied impacted cell cultivability. The decimal 
reduction rates calculated from flow cytometry and plate 
count data were not significant for both plasmid stabili-
zation strategies, as it was already the case without selec-
tion pressure for Re2133/pCB1.

Due to its stability under well-controlled intensive 
culture condition, the plasmid pCB3 would be a valu-
able backbone to evaluate plasmid expression levels in 
new recombinant protein production conditions or for 
expressing novel biosynthetic pathways. Therefore, any 
modification in plasmid expression levels might be attrib-
uted to the recombinant protein production.

In conclusion, we demonstrated that the sugar feeding 
strategy for fed-batch mode is important to consider as 
it can have none negligible impact on microbial behavior 
and therefore on bioprocess performances. In nitrogen 
limited fed-batch cultures, a smooth continuous fructose 
feeding allowed a better carbon use for protein synthesis 
(avoiding organic acid excretion), a lower heterogeneity 
of the plasmid expression and a lower cell permeabiliza-
tion. Indeed, it appeared clearly that pulsed base strategy 
was more stressful for the cells at the single-cell level, 
leading to a direct impact on the biomass production and 
thus on bioprocess performances. Among the stabiliza-
tion systems tested here, the PSK system, an autonomous 
system independent on external addition of compounds 
showed the best ability to maintain plasmid expression 
level stability insuring a greater population homogeneity 
in the culture. Surprisingly, the kanamycin resistance sys-
tem in presence of kanamycin, showed negative impact 
on plasmid expression level, growth and cell permeabil-
ity in comparison with the culture of the same strain but 
without kanamycin addition. Therefore, in the case of 
engineered C. necator, the PSK system hok/sok appeared 
to be a relevant and an efficient alternative to antibiotic 
resistance system for selection pressure especially in 
the case of bioprocess development for economic and 
environmental reasons. The so-designed plasmid pCB3 
would be an interesting tool to study plasmid expression 
levels for the production of other recombinant proteins 
or for expressing biosynthetic pathways.
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