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Effect of liquid volume and microflora source 
on degradation rate and microbial community 
in corn stover degradation
Jingjing Wang1,2*†  , Dan Zhu1,2†, Siqi Zhao1,2, Song Xu1,2, Rong Yang1,2, Wei Zhao1,2, Xiaoxia Zhang1,2 and 
Zhiyong Huang1,2 

Abstract 

Degradation is the bottleneck in the utilization of crop straw. In this paper, we screened the microbial consortia 
degrading corn stover from straw degrading consortia MC1 (M), sheep feces (Y), and mixtures (Q) of M, Y, and cattle 
feces. The effects of microflora source and liquid volume (representing dissolved oxygen) on the microbial commu-
nity and degradation rate of corn stover were investigated. The results showed that the degradation rate and cel-
lulase activity of a 200 mL liquid volume (L2) were significantly higher than that of 100 mL (L1). Microflora source had 
a significant effect on bacterial and fungal diversity, composition and taxa. Q and Y had higher bacterial and fungal 
α-diversity than that of M. The degradation rate was significantly correlated with cellulase activity but not with micro-
bial diversity. This indicated that liquid volume had a significant effect on degradation rate while microflora source 
had a significant effect on microbial community in corn stover degradation.
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Key points

•	 Liquid volume had a significant effect on degradation 
rate and cellulase activity.

•	 Microflora source had a significant effect on micro-
bial community.

•	 The degradation rate was significantly correlated with 
cellulase activity.

Introduction
Crop straw is the most abundant renewable biomass, and 
its worldwide annual yield is estimated at 200 billion tons 
(Liang et al. 2020). The use of crop straw as a source of 
energy, forage, fertilizer, and other high value chemicals 
is of great interest (Zhang 2008). However, due to the 
complexity of lignocellulose structure, degradation is 
the bottleneck in the utilization of crop straw. Compared 
with the physical and chemical degradation of straw, 
microbial degradation has the advantages of environ-
mental friendliness and high efficiency (Liang et al. 2020). 
A number of microorganisms have been isolated and 
used to degrade straw (Arntzen et  al. 2020; Ding et  al. 
2019). Under natural conditions, the degradation of straw 
depends on the synergistic action of multiple microor-
ganisms (Liang et al. 2020; Wang et al. 2016). Microbial 
consortia can improve the efficiency and stability of straw 
degradation compared to a single strain (Gong et  al. 
2020; Zuroff and Curtis 2012). Many microbial consortia 
with high cellulose-degrading activity have been obtained 
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by combination or domestication (Chu et al. 2021; Kato 
et al. 2005).

Corn stover accounts for about 25 % of crop straw. 
There are many microbial consortia that can degrade 
corn stover (Table  1). Some microbial consortia can 
degrade more than 70 % of corn stover pretreated with 
acid or alkali (Wongwilaiwalin et  al. 2010; Zhang et  al. 
2018). However, this is not only expensive but also pol-
lutes the environment. Most microbial consortia can 
only degrade less than 60 % of corn stover without pre-
treatment (Yu et al. 2019; Zhang et al. 2012). Therefore, 
it is necessary to screen the efficient microbial consortia, 
which can degrade corn stover without pretreatment.

Efficient straw degrading microflora are usually 
obtained from ruminant feces or long-term storage of 
lignocellulose (Haruta et  al. 2002; Liang et  al. 2020). 
Wongwilaiwalin et  al. (2013) demonstrated that the 
microflora sources had significant effects on degrada-
tion rate and microbial community. Xing et  al. (2020) 

demonstrated that cow rumen microorganisms are more 
suitable than sheep rumen microorganisms for corn 
stover transformation. Efficient straw-degrading micro-
bial consortia mostly depend on the efficient cooperation 
of aerobic and anaerobic bacteria (Kato et al. 2005; Zhou 
et al. 2015). Generally, aerobic bacteria consume oxygen 
and provide a suitable living environment for anaerobic 
bacteria. Anaerobic bacteria provide a carbon source 
for aerobic bacteria, mainly by degrading lignocellu-
lose. Some literature has shown that oxygen significantly 
affects the efficiency of straw degradation (Lu et al. 2008; 
Wang et al. 2004). However, the effect of oxygen on the 
microbial community for corn stover degradation has not 
been reported.

In this paper, we used the domestication method 
to screen the microbial consortia that can efficiently 
degrade corn stover without pretreatment from differ-
ent environments and studied the effects of microflora 
source and dissolved oxygen (reflected by liquid volume) 

Table 1  Microbial consortia degrading corn stover

Microbial Consortia Temperature (°C) Speed (rpm) Pretreated Degradation 
ratio (%)

Time (days) Reference

CDS-10, enriched from rotten 
animal manure and corn 
straw

25 180 1.5 % H2SO4 63.09 15 (Tang et al. 2020)

Consisting of Pelomonas gx. 
and Curvibacter zj.

35 120 10 % NaOH 78.10 15 (Zhang et al. 2018)

Enriched from corn field soil 30 0 1.5 % NaOH 66.1 10 (Deng et al. 2017)

BGC-1, enriched from indus-
trial sugarcane bagasse pile

50 200 10 % NaOH 72 4 (Wongwilaiwalin et al. 2013)

Enriched from feces and 
sludge

50 0 Steam-exploded 62 7 (Zhang et al. 2012)

CSS-1, enriched from sugar-
cane bagasse compost

50 0 Alkali-peracetic acid 70 7 (Wongwilaiwalin et al. 2010)

Consisting of three Strepto-
myces

30 210 NO 60.55 7 (Gong et al. 2020)

GF-20, enriched from soil and 
cow dung

30 0 NO 59.47 60 (Qinggeer et al. 2016; Yu et al. 
2019)

Consisting of Pelomonas gx. 
and Curvibacter zj.

35 120 NO 58 15 (Zhang et al. 2018)

Enriched from the soil of a 
cattle and chicken manure 
storage tank

28–32 80 NO 48.52 6 (Wang et al. 2014)

Enriched from feces and 
sludge

50 0 NO 51 7 (Zhang et al. 2012)

Enriched from straw accumu-
lation soil and rotten straw

37 0 NO 40 50 (Qiao et al. 2013)

MC1, enriched from compost 55 0 NO 59 14 (Cui et al. 2002; Yuan et al. 
2011)

H-C, enriched from wood-
lands soil

40 0 NO 51 8 (Feng et al. 2011)

CSS-1, enriched from sugar-
cane bagasse compost

50 0 NO 62 7 (Wongwilaiwalin et al. 2010)

CSS-1, enriched from corn 
field soil

30 0 NO 40.9 16 (Liu et al. 2010)
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on the degradation rate and microbial community of corn 
stover. This can not only provide guidance for screen-
ing efficient straw degradation community but also lay a 
foundation for mechanism analysis of microbial commu-
nity degradation of corn stover.

Materials and methods
Materials
Sources of microflora for the preparation of microbial 
consortia in this study were collected from (1) MC1, 
which was domesticated to degrade rice straw (Haruta 
et  al. 2002), (2) sheep feces from a sheep farm (Shiji-
azhuang, China), and (3) cattle feces from a cow farm 
(Shijiazhuang, China). Chopped corn stover (the length 
was about 2–10 cm, and the width was about 0.2-2 cm) 
was obtained from Jilin, China.

Construction of microbial consortia degrading corn stover
Ten grams (or 10 mL) of MC-1, sheep feces, or cattle 
feces was used to inoculate a 250 mL flask containing 
unsterilized 100 mL PCS media (0.1 % yeast extract, 0.5 % 
peptone, 0.5 % CaCO3, 0.5 % NaCl, and 2 % corn stover) 
(Haruta et al. 2002). The mixture was incubated at 50 °C 
under static conditions for 20 days, after which 10 mL of 
the culture was then transferred into fresh media. This 
procedure was repeated 3 times. After that, we obtained 
microbial consortia degrading corn stover from MC1 
(M), sheep feces (Y), and cattle feces (N). Then, the three 
consortia were equally mixed together to obtain micro-
bial consortia Q.

Successive subcultivation of microbial consortia degrading 
corn stover
Efficient microbial consortia M (M), microbial consortia 
Q (Q), microbial consortia Y (Y), and PCS medium (CK) 
were used to inoculate a 250 mL conical flask containing 
4 g corn straw and 100 mL sterilized PCS media at 20 % 
inoculum (L1), and then incubated for 25 days at 50  °C 
for 3 consecutive generations. The 20 % inoculum was 
used to inoculate a 250 mL conical flask containing 4  g 
corn stover and 200 mL sterilized PCS media (L2), and 
incubated at 50  °C for 25 days. The initial surface dis-
solved oxygen was detected by Luminescent Dissolved 
Oxygen (LDO) Sensors HQ40d (HACH Company, Love-
land, Colorado, USA).

Determination of the degradation rate of corn stover
The 9 samples cultured from three microbial consortia 
(M/Q/Y) three times (3–5 generations) were shaken and 
filtered aseptically. The filtrate was mixed with 50 % glyc-
erin (1:1) and stored at − 80  °C for analysis. The straw 
residue was washed twice with 3 % acetic acid and water, 
and then dried in an oven at 105 °C (Li et al. 2020). The 

degradation rate was calculated by dividing the residual 
weight in treatments by that in CK.

Analysis of cellulase activity
Endo-glucanase (CMCase, Endo-1, 4-b-d-glucanase; EC 
3.2.1.4) activity of the 9 samples was analyzed by follow-
ing the method of Saini et  al. (2015). Briefly, 0.5 mL of 
suitably diluted filtrates and 1 mL of 1 % (w/v) CMC solu-
tion in citrate buffer (50 mM, pH 4.5) were mixed and 
incubated at 50  °C for 30  min. The reaction was termi-
nated by adding 1 mL of 1 mol/L NaOH solution. Then, 
3 mL of 3,5-dinitrosalicylic acid (DNS) was added and 
incubated in boiling water for 10 min. After cooling with 
running water, the volume was fixed to 25 mL, and the 
absorbance of glucose was measured at 540 nm. One 
unit (IU) of enzyme activity was defined as the amount of 
enzyme required to liberate 1 µmol of glucose.

Analysis of microbial diversity
The filtrates of the 9 samples were used to extract 
DNA and sequence using bacterial (515  F: GTG​CCA​
GCMGCC​GCG​GTAA; 806R: GGA​CTA​CHVGGG​TWT​
CTAAT) and fungal (ITS5-1737  F: GGA​AGT​AAA​AGT​
CGT​AAC​AAGG; ITS2-2043R: GCT​GCG​TTC​TTC​ATC​
GAT​GC) primers using the Hiseq platform by Novogen 
Co., Ltd (Tianjin, China). Microbial diversity analysis was 
performed using BMKCloud (www.​biocl​oud.​net). All sta-
tistical analyses were performed using R (version 3.1.1). 
Analysis of variance (ANOVA) was used to evaluate the 
effects of microflora source and liquid volume on corn 
stover degradation, cellulase activity, and microbial diver-
sity. Principal coordinate analysis (PCoA) and permuta-
tional multivariate analysis of variance (PERMANOVA) 
with the ADONIS function based on the weighted Uni-
Frac distance were performed to evaluate the overall dif-
ferences in the bacterial community (Wang et al. 2018).

Results
Effects of microflora source and liquid volume on corn 
stover degradation
The results showed that the degradation rate of corn 
stover was significantly affected by liquid volume but 
not microflora source (Fig. 1D–F). The degradation rate 
of 200 mL liquid volume (L2) was significantly higher 
than that of 100 mL (L1) (Fig. 1F). The degradation rate 
of L2 was increased by 49 % compared with L1, reaching 
67.41 % (Fig. 1F). The best degradation treatment was Y3, 
for which the degradation rate was 71.59 % (Fig. 1D).

Effects of microflora source and liquid volume on cellulase 
activities
Endo-glucanase activity was significantly affected by liq-
uid volume but not microflora source (Fig.  1G–I). The 

http://www.biocloud.net
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endo-glucanase of L2 was significantly increased by 
2-fold compared with L1, reaching 3.98 U/ml (Fig.  1I). 
Pearson correlation results showed that there was a sig-
nificant correlation between degradation rate and endo-
glucanase activity (P < 0.05) (Table 2).

Effects of microflora source and liquid volume on microbial 
diversity
Across all samples, we obtained high-quality bacterial 
(60,162–69,939 sequences per sample, total = 590,998, 
mean = 65,666) and fungal sequences (53,598–69,121 
sequences per sample, total = 564,656, mean = 62,740). 
After rarefied to 49,000 sequences per sample, microbial 
diversity and abundance were calculated. The α-diversity 
of bacteria and fungi was significantly affected by differ-
ent microflora sources (Fig.  2). The bacterial Shannon 

index of Q and Y was significantly higher than that of M. 
The fungal Shannon index of M was significantly lower 
than that of Q. Liquid volume had no significant effect on 
microbial α-diversity. Pearson correlation results showed 
that there was no significant correlation between deg-
radation rate and microbial α-diversity (Table  2). The 
results of PCoA and PERMAVONA showed that there 
were significant differences in bacterial and fungal com-
munities of different microflora sources (Fig. 3A and C). 
The bacterial and fungal communities were not signifi-
cantly affected by different liquid volumes (Fig.  3B and 
D).
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Fig. 1  Degradation experiment of the first (A), second (B), and third (C) generation and the effect of treatments (D/G), microflora sources (E/H), and 
liquid volume (F/I) on corn stover degradation (D/E/F) and endo-glucanase activity (G/H/I). M, microbial consortia source from MC1; Q, microbial 
consortia source from MC1, sheep, and cattle feces; Y, microbial consortia source from sheep feces; L1, 100 mL PCS medium; L2, 200 mL PCS 
medium. Values followed by different letters are significantly different at P < 0.05

Table 2  Pearson correlations of degradation ratio with cellulose activity and microbial diversity

Endoglucanase activity Bacterial alpha diversity Fungal 
alpha 
diversity

Degradation rata Pearson correlations 0.676 0.136 − 0.422

Significance (P) 0.046 0.728 0.258
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Fig. 2  Effect of treatments (A/D), microflora source (B/E), and liquid volume (C/F) on bacterial (A/B/C) and fungal (D/E/F) α-diversity. M, microbial 
consortia source from MC1; Q, microbial consortia source from MC1, sheep, and cattle feces; Y, microbial consortia source from sheep feces; L1, 100 
mL PCS medium; L2, 200 mL PCS medium. Values followed by different letters are significantly different at P < 0.05
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Effects of microflora source and liquid volume on microbial 
composition
Firmicutes and Proteobacteria were the domi-
nant bacterial phyla across all treatments (Fig.  4A). 
The top 5 bacterial species in M were Brevibacil-
lus borstelensis, uncultured_Clostridia_WSC-8, 
uncultured_Ruminiclostridium_1, uncul-
tured_ Paenibacillus, and uncultured_o_MBA03. 
The top 5 bacterial species in Q were 
uncultured_o_MBA03, uncultured_Hydrogenispora, 
u n c u l t u r e d _ L i m n o c h o r d a c e a e , 
uncultured_Methylococcaceae, and 
u n c u l t u r e d _ R u m i n o c o c c a c e a e _ U C G -
012. The top 5 species genera in Y were 
uncultured_o_MBA03, uncultured_Chelativorans, 
u n c u l t u r e d _ M e t h y l o c o c c a c e a e , 
uncultured_Hydrogenispora, and 
uncultured_Haloplasma (Fig.  4B). Unclassified, Asco-
mycota, Basidiomycota, and Mortierellomycota were 
the dominant fungal phyla across all treatments 
(Fig.  4C). The top 5 fungal species in M were Unclas-
sified, Alternaria alternata, Fusarium solani, Mortiere-
lla alpine, and Malassezia restricta. The top 5 fungal 

species in Q were Unclassified, Mortierella elongata, 
Mortierella alpina, Alternaria alternata, and Hypho-
derma setigerum. The top 5 fungal species in Y were 
Unclassified, Alternaria alternata, Nigrospora oryzae, 
Epicoccum nigrum, and Zopfiella marina (Fig. 4D).

Effects of microflora source and liquid volume on microbial 
taxa
LEfSe analysis showed that different microflora sources 
had significant effects on bacterial taxa (Fig.  5A). M 
enriched some bacterial taxa from Paenibacillus, Clostri-
diaceae_1, Ruminiclostridium_1, and M55_D21. Q 
enriched some bacterial taxa from Deinococcales, Siniba-
cillus, Heliobacteriaceae, Thermoanaerobacterales, Lim-
nochordales, and uncultured_bacterium_p_Firmicutes. Y 
enriched some bacterial taxa from Dysgonomonadaceae, 
Thermobacillus, Caldicoprobacteraceae, Christensenel-
laceae, Clostridium_sensu_stricto_10, Family_XI, Rumi-
nococcaceae_UCG_010, Ruminococcaceae_UCG_013, 
D8A_2, uncultured_S0134, Rhizobiales, uncultured_Alp
haproteobacteria, Myxococcales, CCD24, and Izimaplas-
matales. There were a few differences in bacterial taxa 
between different liquid volumes (Fig.  5B). L1 enriched 
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15 bacterial species from Gemella, XI, Granulicate-
riaceae, Streptococcaceae, Lactobacillales, Massilia, and 
Neisseriaceae. Different microflora sources had an effect 
on fungal taxa (Fig. 5C). Q enriched 44 fungal taxa from 
Botryosphaeriales, Periconiaceae, Phaeosphaeriaceae, 
Alternaria chlamydosporigena, Chaetothyriales, Gym-
noascaceae, Helotiaceae, Pseudaleuria, Saccharomycetes, 

Fusarium brachygibbosum, Chaetomium iranianum, 
Microdochium trichocladiopsis, Ceratobasidium, Cla-
vulinaceae, Geastrales, Polyporales, Russulales, Thele-
phorales, Chytridiomycota, Mortierella amoeboidea, and 
Mortierella hyalina. There was no significant difference 
in fungal taxa between different liquid volumes (Fig. 5D).

Fig. 5  LEfSe analysis of bacterial (A, B) and fungal (C, D) composition changes following different microflora sources (A/C) and liquid volumes (B/D) 
(LDA > 2). M, microbial consortia source from MC1; Q, microbial consortia source from MC1, sheep, and cattle feces; Y, microbial consortia source 
from sheep feces; L1, 100 mL PCS medium; L2, 200 mL PCS medium
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Discussion
Our study revealed that microflora source had no signifi-
cant effect on corn stover degradation. However, Wong-
wilaiwalin et  al. (2013) showed that microbial consortia 
enriched from industrial sugarcane bagasse pile (BGC-
1) had a better ability to degrade alkali pretreated corn 
stover (72 %) than those enriched from cow rumen fluid 
(CRC-1) and pulp mill-activated sludge (ASC-1). Differ-
ent conclusions on degradation rate might be due to the 
similarity of consortia sources. All three of our microbial 
consortia (M/Q/Y) came from feces or compost con-
taining feces. The sources of our microbial consortia is 
similar, while the sources of Wongwilaiwalin’s microbial 
consortia is different. This indicated that the ability of lig-
nocellulose degradation rate might not be very different 
among the microbial consortia from similar sources.

Our study found that a higher liquid volume increased 
corn stover degradation. Higher liquid volume will lead 
to lower dissolved oxygen in the conical flask. The ini-
tial surface dissolved oxygen of L1 and L2 was 7.05 and 
5.86  mg/L, respectively. This indicated that straw deg-
radation was more efficient in a lower dissolved oxygen 
environment. This was supported by previous works 
demonstrating that microbial consortia need a micro-
aerobic environment to degrade corn stover (Lu et  al. 
2008; Wang et  al. 2004). Some reports also displayed 
that straw degradation was completed by aerobic and 
anaerobic bacteria, in which anaerobic bacteria played a 
role in degradation (Kato et  al. 2005; Zhou et  al. 2015). 
Therefore, we speculated that the lower dissolved oxy-
gen environment caused by a higher liquid volume might 
promote the abundance or activity of anaerobic lignocel-
lulose-degrading bacteria.

There are many reports on microbial consortia degrad-
ing corn stover (Table  1). The best microbial consortia 
can degrade 62 % of corn stover without pretreatment 
and 78 % of corn stover pretreated with acid or alkali 
(Wongwilaiwalin et  al. 2010; Zhang et  al. 2018). Our 
results showed that the three microbial consortia 
(M/Q/Y) degraded more than 60 % of corn stover with-
out pretreatment, and the highest degradation rate was 
71.59 % by Y3. This indicated that the microbial consortia 
from feces could degrade corn straw efficiently, and the 
microbial consortia from sheep feces were slightly better 
than others.

Microorganisms hydrolyze straw to monomeric sug-
ars by cellulase. Cellulase is a multienzyme complex 
mainly including endo-glucanase, exo-glucanase, and 
β-glucosidase, which act synergistically during enzymatic 
hydrolysis (Saini et al. 2015). Endo-glucanase is the most 
important component of cellulase system (Zhang et  al. 
2019). Endo-glucanase (EC 3.2.1.4) can randomly cleave 
the internal beta-1,4-glycosidic bonds in amorphous 

regions of cellulose polymers. In this study, endo-glu-
canase was used as an important basis to judge the ability 
of cellulase. The results showed that liquid volume had a 
significant effect on endo-glucanase activity, and endo-
glucanase was closely related to degradation rate, which 
is supported by previous works (Takizawa et  al. 2020; 
Wang et al. 2004). This indicated that the lower dissolved 
oxygen environment caused by a higher liquid volume 
promote the activity of anaerobic lignocellulose degrad-
ing bacteria.

There are few studies on the effect of liquid volume on 
microbial diversity. Our study showed that the liquid vol-
ume had a significant effect on the degradation rate but 
not on microbial diversity. Microbial diversity was not 
closely related to the degradation rate. This suggested 
that the lower dissolved oxygen environment caused by 
higher liquid volume mainly increased the degradation 
rate of corn straw by promoting microbial activity but 
not microbial diversity. Our study also revealed that the 
microflora source had a significant effect on microbial 
diversity but not degradation rate. This indicated that the 
species degrading corn straw may be diverse. However, 
a study revealed that the microflora source had a sig-
nificant effect on degradation rate but not on microbial 
diversity (Wongwilaiwalin et al. 2013). Different conclu-
sions on degradation rate might be due to the similar-
ity of consortia sources. We have already discussed this 
point in the first paragraph of Discussion. Different con-
clusions on microbial diversity might be due to differ-
ent domestication times. The domestication time of our 
microbial consortia was short (4–6 generations), while 
that of Wongwilaiwalin’s was long (21–27 generations). 
With the extension of domestication time and conver-
gence adaptation, the microbial diversity might be more 
similar. This also indicated that different spatiotemporal 
scales might lead to different conclusions. Wongwilaiwa-
lin’s conclusion might be of larger spatiotemporal scale, 
and ours might be of smaller spatiotemporal scale.

A few studies analyzed the bacterial composition of 
corn stover degrading microbial consortia by high-
throughput sequencing technology. In this study, we 
showed that the three microbial consortia (M, Q, and Y) 
of corn straw degradation were mainly composed of Fir-
micutes and Proteobacteria. The results were supported 
by some previous works (Feng et  al. 2011; Hua et  al. 
2014; Yu et al. 2019). However, some reports also showed 
that the microbial consortia degrading corn stover were 
mainly composed of Proteobacteria and Bacteroidetes 
or Firmicutes and Bacteroidetes or Proteobacteria and 
Actinobacteria (Liu et  al. 2010; Qiao et  al. 2013). These 
differences may be caused by the different sources and 
culture conditions of the microbial consortia. The micro-
bial consortia composed of Firmicutes and Proteobacteria 
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mainly came from feces and compost, and that composed 
of other bacteria mainly came from soil. Bacterial com-
position at the species level showed that most of the 
species in M, Q, and Y were unculturable bacteria. The 
dominant species in M, Q, and Y were significantly dif-
ferent. Uncultured_o_MBA03 was a common dominant 
species in M, Q, and Y. MBA03 is often found in ther-
mophilic anaerobic environments and may have a strong 
ability to degrade lignocellulose (Wu et al. 2020). Brevi-
bacillus borstelensis, uncultured_Clostridia_WSC-8, unc
ultured_Ruminiclostridium_1, and uncultured_ Paeniba-
cillus in M and uncultured_Ruminococcaceae_UCG-012 
in Q have been reported to degrade lignocellulose (Liang 
et al. 2009; Mathews et al. 2016; Zhang et al. 2012).

Few studies have analyzed the fungal composition of 
corn straw degrading microbial consortia using high-
throughput sequencing technology. This study showed 
that dominant fungi in M, Q, and Y were unclassified, 
Ascomycota, Zygomycota, and Mortierellomycota. Asco-
mycota and Zygomycota were also reported as domi-
nant fungi in corn stover degrading microbial consortia 

CCS-1 by a clone library (Liu et  al. 2010). Fungal com-
position at the species level showed that most of the spe-
cies in M, Q, and Y were unclassified, and the dominant 
species in M, Q, and Y were significantly different. Alter-
naria alternata, which is a common dominant species 
in M, Q, and Y, has the ability to degrade cellulose and 
lignin (Guillen et al. 1987; Sharma et al. 2016). Fusarium 
solani in M, Mortierella elongata and Hyphoderma seti-
gerum in Q, Nigrospora oryzae and Epicoccum nigrum in 
Y have been reported to have the ability to degrade ligno-
cellulose (Lozovaya et al. 2006; Olajuyigbe et al. 2016; Yao 
et al. 2012; Yurchenko and Wu 2014).

The species enriched or inhibited by different micro-
flora sources have close phylogenetic relationships, 
such as Paenibacillus enriched in M, Sinibacillus 
enriched in Q, and Thermobacillus enriched in Y that 
all belong to Bacillales. M enriched Clostridiaceae_1, 
Ruminiclostridium_1, and M55_D21, Q enriched 
Heliobacteriaceae and Thermoanaerobacterles, and 
Y enriched Caldicoprobacteraceae, Christensenel-
laceae, Clostridium_sensu_stricto_10, Family_XI, 

Fig. 6  Dominant and enriched species with a lignocellulosic degradation ability among the three bacterial communities. M, microbial consortia 
source from MC1; Q, microbial consortia source from MC1, sheep, and cattle feces; Y, microbial consortia source from sheep feces
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Ruminococcceae_UCG_010, Ruminococcceae_
UCG_013, and D8A_2, which all belong to Clostridia. It 
is speculated that the functions of these species in the 
three bacterial communities may be similar. Most of 
these species in Bacillales (Kong et  al. 2020; Mathews 
et  al. 2016) and Clostridia (Fosses et  al. 2017; Meng 
et  al. 2020) have stress resistance, such as high tem-
perature and low dissolved oxygen resistance, and the 
potential for lignocellulose degradation. This was also 
supported by previous works that consortia originated 
from highly diverse environmental microflora sharing 
similar composite profiles at higher taxa levels with 
substantial differences at lower taxa levels (Wongwilai-
walin et  al. 2013). In addition, Q and Y also enriched 
some thermophilic, anaerobic, or cellulolytic bacteria 
(Garcia and Müller 2020; Puig-Castellvi et  al. 2020). 
Bacterial species enriched by L1 were mainly (faculta-
tive) aerobic bacteria (Van Craenenbroeck et  al. 2011; 
Zotta et  al. 2017), and most of these species cannot 
degrade cellulose. This indicated that the aerobic bac-
teria decreased significantly with the increase of liquid 
volume. The fungi enriched by Q were mainly from 
Ascomycota and Basidiomycota. Among them, some 
species in Polyporales and Helotiaceae have the ability 
to degrade lignocellulose (Gianoulis et al. 2012; Huang 
et al. 2019).

The dominant and enriched species with the ligno-
cellulosic degradation ability among the three bacte-
rial communities (M/Q/Y) were sorted out (Fig.  6). It 
suggested that different microbial communities might 
degrade corn straw through different species combina-
tions. Figure  3A showed that the distance between Q 
and Y bacterial community was close, and that between 
Q and M bacterial community was far. It was specu-
lated that most of the bacteria in Q might originate 
from Y. Figure  3C showed that the fungal communi-
ties of Q and Y3 are close, and Q was far away from 
other samples. It was speculated that most of the fungi 
in Q might originate from N (it was a pity that N sam-
ples with weak degradation ability were not reserved 
for microbial diversity detection), and some of them 
might originate from Y. However, Fig.  6 showed that 
Q, M and Y shared less enriched species. It was spec-
ulated that when M, Y and N were mixed into Q, the 
complex interaction between species made their abun-
dance changed significantly, resulting in that although 
the bacterial communities of Q and Y were similar, the 
enriched species were obviously different. The rela-
tionship between mixed microflora (e.g. Q) and source 
microflora (e.g. M, Y and N) is worthy of further study.

In conclusion, our results show that liquid vol-
ume had a significant effect on degradation rate while 

microflora source had a significant effect on microbial 
community in corn stover degradation.
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