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Abstract

The fast evolution of surface treatments for biomedical implants and the concern with their contact with cells and
microorganisms at early phases of bone healing has boosted the development of surface topographies present-

ing drug delivery potential for, among other features, bacterial growth inhibition without impairing cell adhesion. A
diverse set of metal ions and nanoparticles (NPs) present antibacterial properties of their own, which can be applied
to improve the implant local response to contamination. Considering the promising combination of nanostructured
surfaces with antibacterial materials, this critical review describes a variety of antibacterial effects attributed to specific
metals, ions and their combinations. Also, it explains the TiO, nanotubes (TNTs) surface creation, in which the pos-
sibility of aggregation of an active drug delivery system is applicable. Also, we discuss the pertinent literature related
to the state of the art of drug incorporation of NPs with antibacterial properties inside TNTs, along with the promising

future perspectives of in situ drug delivery systems aggregated to biomedical implants.
Keywords: Antibacterial surfaces, Biomedical implants, Drug delivery, Nanoparticles, Surfaces, TiO, nanotubes

Introduction
Biomedical implants have their most critical moment of
integration to living tissues when their biomaterial first
contacts the human cells and local microorganisms (Yue
et al. 2015). Researchers and clinicians expect the best
biomaterial performance during this first contact, and
enhance it by changing surface properties and morphol-
ogy to boost the speed and quality of the healing process
(Kunrath and Hubler 2018). However, implant surface
contamination by bacterial agents might pose a signifi-
cant threat, jeopardizing implant healing and/or affecting
significantly its long-term survival (Sridhar et al. 2015;
Raphel et al. 2016).

Nanoscale changes in implant surfaces have been
the focus of several currently reported studies. The
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and indicate if changes were made.

possibilities involved in surface nanotexturization are
diverse, and studies show that these surfaces might offer
substantial advantages regarding bacterial adhesion, bac-
terial proliferation and bone healing (Coelho et al. 2014;
Truong et al. 2015; Kunrath and Hubler 2018). Following
this idea, a nanotexturization method using electrochem-
ical anodizing allows the formation of TiO, nanotubes
(TNTs), which substantially alter the physico-chemical
properties of the implant surface making it friendlier to
human bone cells and promoting potential antibacterial
properties (Huang et al. 2017; Zhukova et al. 2017).
TNTs allow properties changes in terms of surface
roughness, energy, wettability, tube diameter and pos-
sibly its greatest advantage, the alternative of incor-
poration of components as antibiotic drugs and other
materials with similar potential, along with organic
chemicals such as specific proteins, cytokines and growth
factors (Hemeg 2017; Awad et al. 2017). The incorporat-
ing of such characteristics might allow the concept of a
drug delivery system incorporated to those biomedical
implants, as numerous drugs might be integrated to the
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tubes and released in situ through the activation of spe-
cific trigger mechanisms, which might be activated for
local infection control as needed. (Wang et al. 2017a, b, ¢;
Kunrath et al. 2018).

Infections contracted during the surgical act and/or
after the healing process represent one of the potential
risks to induce failure of a biomedical implant. There-
fore, studies have been proposed aiming the development
of drug incorporation systems like nanomaterials with
antimicrobial properties to minimize those associated
risks (Truong et al. 2015). Many ions and metal particles
have been described to present antibacterial properties,
which can be used in TNTs (Hemeg 2017). Nonetheless,
biocompatibility and citotoxicity are features to be care-
fully evaluated before their safe indication as applicable
tools in vivo (Lewinski et al. 2008). Innovative studies are
nowadays testing these possibilities regarding drug incor-
poration with nanomaterials, evaluating their responses
against bacterial colonization and cell adhesion (Liu et al.
2016; Yao et al. 2018).

In addition, TNTs surfaces allow the development of
resorbable coatings over their tubes, which could main-
tain these added drugs viable, including antibiotics and
other potential antibacterial agents, as well as to promote
their slow release to the surrounding tissues if needed
(Chen et al. 2013a, b; Kumeria et al. 2015). Preliminary
studies with biodegradable coatings show promising
results of drug release systems up to 30 days after sur-
gical implantation. This might provide the basis for the
development of a long-term release system activated by
a specific mechanism without favoring bacterial drug
resistance (Gulati et al. 2012).

The present critical review aims to describe the cur-
rently available nanoscale metallic materials with poten-
tial antibacterial properties already reported in the
literature, detailing the TNTs surface construction pro-
cess for biomedical implants along with their specific
properties that might influence the adhesion and prolif-
eration of microorganisms. In order to do that, the pre-
sent review illustrates the status quo of nanoparticles/
drugs with antibacterial properties incorporated in the
TNTs and their preliminary reported test results, includ-
ing a summary of coating possibilities and alternatives of
late drug release mechanisms.

Nanostructures and materials vs. antibacterial properties

Several materials and natural structures are studied
searching for similarities in their intrinsic natural prop-
erties that could be adapted and used as biomaterials
(Hasan et al. 2013). Some natural tissue surfaces have
the ability to inhibit bacterial adhesion and proliferation,
as well as alter their surface wettability. Natural-occur-
ring examples are found in plant leaves, skin of aquatic
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animals, insect wings, among other structures that pre-
sent antibacterial properties or some effect that might
hinders bacterial proliferation (Bhadra et al. 2015; Jagges-
sar et al. 2017).

Currently, implants are produced using synthetic and
non-synthetic materials with nanosurfaces, many of
them through lithography, laser, or receiving chemical
treatments (Zhang et al. 2006; Penha et al. 2018). Due
to nanotopographical characteristics, the promotion
of cellular interaction is substantial, since the extracel-
lular matrix contact with the prepared surface occurs
in nanoscale (Yim et al. 2010). Applied biomaterials are
expected to provide faster tissue healing where they are
inserted without any generated proinflammatory reac-
tions, including degradation in vivo or corrosion. In addi-
tion, they might present properties to mitigate or even
inhibit bacterial contamination (Bettinger et al. 2009;
Neoh et al. 2012).

In this context, many metals have been studied in their
natural atomic size, as well as fragmented to a condi-
tion of nanoparticles (NP), presenting potential proper-
ties (Kim and An 2012; Hemeg 2017). As already known,
metals such as Zinc, Silver, Gold, Cobalt, Nickel and Lead
have natural antibacterial characteristics, since their
interaction with bacteria usually generates cellular struc-
tural damages, and complications in bacterial adhesion
and proliferation (Dizaj et al. 2014; Hemeg 2017).

Therefore, many of these materials, when brought to
NPs scale, have their antibacterial properties intensified,
since they are able to interact more rapidly and effectively
at nanoscale level (Hemeg 2017; Lee et al. 2018). Their
main factor related to antibacterial action is associated
with the production of hydrogen peroxide, superoxide
anions and free hydroxyl radicals that induce countless
damages to bacteria, such as membrane disruption, oxi-
dative stress, changes in DNA, interference in the biofilm
formation, among others (Oktar et al. 2015; Duran et al.
2016). The electrostatic interaction between the NPs
and microorganisms affects its toxicity. Some NPs when
connecting to bacterial cell surface release metal ions
that bind and disrupt the cell membrane. Likewise, the
metal adsorption results in oxidative stress due to ROS
generation, which can lead to cell membrane damage.
Furthermore, penetration of metal ions across the bac-
terial membrane results in damages to DNA by interac-
tion with nitrogenous bases, which generate inhibition
of DNA replication or lead to DNA degradation. In addi-
tion, metal ions can bind to ribosome subunits, inhibit-
ing the protein synthesis (Hajipour et al. 2012; Hemeg
2017; Lee et al. 2018). Another important action of NPs
is their interaction with biofilm. Biofilm is formed by
microorganisms involved in a self-produced polymeric
matrix that mediate the adhesion to a surface, acting as
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a physical barrier against antimicrobials (Kumar et al.
2017). However, NPs such as TiO,, Ag, ZnO, Cds, MgF,,
Bi and YF; can inhibit bacterial biofilm formation or dis-
rupt formed biofilms (Hemeg 2017).

To clarify the antibacterial properties of metals, Table 1
shows the results of studies on different bacterial species
and the generated effects in terms of their function and
tissues, focusing mainly on the use of NPs derived from
base metals. NPs are able to inhibit the adhesion, prolif-
eration and to cause damage both in gram-positive and
gram-negative bacteria, but some studies have demon-
strated that NPs derived from NiO, Cu, Al,O,, SiO, and
Fe,O; should be more effective against gram-positive
bacterial strains (Baek and An 2011; Ruparelia et al. 2008;
Jiang et al. 2009; Azam et al. 2012), suggesting a greater
vulnerability of gram-positive bacteria to NPs. However,
other studies indicated that Au and ZnO NPs are most
effective against gram-negative pathogens, due to the
higher thickness of the peptidoglycan layer in gram-pos-
itive bacteria (Shamaila et al. 2016; Sinha et al. 2011). In
addition, Ruparelia et al. (2008) demonstrated that silver
NPs should be more effective against E. coli (gram-neg-
ative bacteria) than B. subtilis (gram-positive bacteria).
Conversely, Yoon et al. (2007) found a better efficiency of
Ag NPs against B. subtilis than E. coli. Therefore, it should
be considered that there are many variables among
the studies, such as NP size and concentration, and the
method used to evaluate the antimicrobial activity.

TiO, nanotubes (TNTs)

Anodization process

Physical and chemical treatments for Ti have been pro-
posed in order to obtain surfaces with better biocompat-
ibility. Among these techniques, anodization has been
recognized for improving wear and corrosion resistance,
as well as increasing TiO, surface roughness and sur-
face porosity, with varying thicknesses (Liu et al. 2012).
In addition, it is considered a methodology that easily
reproduces results, being accessible and inexpensive, and
also able to facilitate researchers to test their properties
with different scientific bases (Awad et al. 2017).

Surface modification has been reported to be an effec-
tive tool to promote the integration between bone and
biomaterials (Minagar et al. 2012). Anodizing is an effec-
tive electrochemical method that has been used success-
fully in orthopedic implants surface treatment (Liu et al.
2004). It can be performed in an electrochemical cell
with two electrodes (usually titanium anode, platinum or
titanium cathode). The oxidation and reduction reactions
occur at the anode when a current or constant voltage is
applied, thus establishing an electric field that guides ion
diffusion present in the electrolyte, leading to oxide film
formation on the surface of the anode.
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The chemical and structural properties of anode oxides
vary according to the different solutions used as electro-
lytes. The anodization electrochemical parameters signif-
icantly affect film growth behavior and properties. Such
features include the type of solution used as electrolyte,
reagent concentration, temperature, electrical parame-
ters, anodizing time and solution stirring speed (Liu et al.
2004; Cui et al. 2009; Liu et al. 2012). The anode potential
and the electric current can alter the anion transfer pro-
cess during anodization, as well as determining thickness,
surface morphology and microstructure of the anodic
coatings (Awad et al. 2017; Kunrath et al. 2018).

From the control of this entire process and selec-
tion of the correct protocols, TNTs can be developed
with dimensions and properties suitable for biomedical
implants as shown in Fig. 1.

TiO, nanotubes properties and advantages

Small changes in the anodization process directly influ-
ence the properties of TNTs, such as surface roughness,
wettability, cellular interaction, drug loading capacity
and chemical physical structure, as can be seen in Fig. 2
(Awad et al. 2017). Nanotubes surfaces with greater
roughness and very low wettability angles have been
described to allow expressive responses in adhesion and
proliferation of mesenchymal or bone cells (Vasilev et al.
2010; Yu et al. 2018). On the other hand, some investi-
gations have shown TNTs surfaces with hydrophobic
properties might positively influence bacterial adhesion
(Zhang et al. 2013).

Important biological properties associated with
implant surfaces are hugely influenced by changes in tube
morphological characteristics. A great number of studies
applying cell culture techniques on TNTs presented bet-
ter cell adhesion and proliferation on nanotubes of 70 nm
in diameter (Awad et al. 2017; Yu et al. 2018), although
expressive results were also reported when applying
diameters ranging from 30 to 100 nm (Yu et al. 2018).

Antibacterial properties of TNT surfaces were evalu-
ated in comparison with bacterial responses to microtex-
tured surfaces (Miao et al. 2017). As most bacteria and/or
viruses have their size compatible to a micrometric scale,
the nanoscale topography presented in TNTs seemed
to reject or even hinder their growth in culture (Jagges-
sar et al. 2017; Miao et al. 2017; Lee et al. 2018) Another
observed advantage is that TNTs chemical-physical
structure presents great resistance to corrosion and deg-
radation in vivo, showing promising results considering
application in biomedical implants (Alves et al. 2017).

Despite these numerous advantages, the greatest dif-
ferential of the TNTs technology relies on the possibility
of drug or NPs incorporation in the tubes. As described
by some authors, this might allow even the creation of a
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Fig. 1 Anodization process explanatory scheme (1). TiO, nanotubes made through anodization (2)

“smart” drug transport system, allowing that a drug could
be stored and late released in situ in an on-demand basis,
not possible in any other surface treatment currently
used in biomedical implants (Wang et al. 2017a, b, ¢;
Awad et al. 2017).

Wettability and bacterial adhesion

One of the most influential properties regarding cell or
bacterial adhesion to metallic implants is surface wet-
tability. This property can be modified with consequent
treatments of the nanotubes applying thermal, chemical,
photofunctionalization, and coating treatments (Oliveira
et al. 2017; Hasan et al. 2013; Lai et al. 2016).

Studies on hydrophobic surfaces showed important
bacterial anti-adhesion properties and promotion of
bone cells growth (Lai et al. 2016; Fadeeva et al. 2011;
Gittens et al. 2014). These results might be extrapolated
for nanotubes surface development aiming the promo-
tion of bacterial repulsion, combined with high biocom-
patibility as depicted in Fig. 3 (Xu and Siedlecki 2014;
Mei et al. 2014).

Synthetic and/or non-synthetic coatings, which are
used to keep added drugs in the internal parts of the
nanotubes, or to protect the TNT system, usually present
hydrophobic properties (Oliveira et al. 2017; Kumeria
et al. 2015). The adsorption of bacterial extracellular
matrix to these surfaces might be impaired, turning bac-
terial local proliferation and consequently biofilm forma-
tion unlikely (Xu and Siedlecki 2014).

However, other studies characterized hydrophilic sur-
faces as presenting better adhesion and proliferation con-
ditions for bone-like and undifferentiated mesenchymal
cells, as well as pre-osteoblasts (Lotz et al. 2018; Gittens

et al. 2014). This may be a counterpoint compared to
hydrophobic surfaces. Nonetheless, as described above,
other studies showed better antibacterial performance
on hydrophobic surfaces, and this surface wettability vs.
bacterial/cell relation is still not fully clarified.

Drug delivery system

Traditional therapies to prevent or treat infection/inflam-
mation in surrounding tissues of biomedical implants
are usually administered systemically. However, systemic
drug administration does not target a specific site and
may not interact directly at the desired site. The pos-
sibility of having a localized and selective drug deliv-
ery system for biomedical implants acting as an aid or
even replace a systemic drug administration becomes
extremely promising (Lyndon et al. 2014; Hemeg 2017).

It has been stated that regarding implant surgery, oste-
oblasts and bacteria establish a marked competition for
implant surface adhesion, and the alternative of loading
TNTs with antibacterial drugs might be of great advan-
tage (Miao et al. 2017). Other studies have also suggested
that the successful loading of TNTs with antimicrobial
peptides for later local release might positively contribute
to raise levels of infection prevention, or the combina-
tion of an initial rapid release with an extended slow and
gradual release (Li et al. 2017).

Investigations suggested that some bacteria such as
Staphylococcus aureus, Staphylococcus epidermidis and
Escherichia coli are often present in implant postopera-
tive infections and negatively affect the healing process
of bone. In order to combat this local cellular compe-
tition more emphatically, the alternative of improving
surface properties with antibacterial characteristics
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Fig. 2 Alteration in nanotube diameter and morphology only by variation of the solution used and voltage parameters. 1 M solution (NH,)
250,+NH, F at 20V (1a, b) and NH,F +H,O + ethylene glycol at 60 V (1¢, d). Adhesion of osteoblastic cells on machined surface (2a) and surface
of TiO, (2b) nanotubes [Reprinted and adapted with permission from Elsevier, (Awad et al. 2017)]

becomes crucial (Anselme et al. 2010; Widaa et al.
2012). Alternatively to antibacterial drugs, application
of specific metal particles might also be considered due
to their specific bacteriostatic and bactericidal activi-
ties. Metallic elements such as ZnO-NPs presented
excellent ability to control S. aureus when applied to
TNTs (Yao et al. 2018). In this context, an investiga-
tion on loading of ZnO nanoparticles of irregular and
regular shapes to the implant surface and later testing
it against bacterial proliferation as well as macrophages

viability was conducted. The results suggested a ZnO
capacity to inhibit bacterial growth and macrophage
adhesion, which might ultimately result in lower levels
of local inflammation around implants (Yao et al. 2018).

Silver nanoparticles loaded onto TNTs showed a
significant antibacterial effect against E. coli at both
contact kill analysis and agent release killing effect,
presenting promising results (Chen et al. 2013a, b).
Copper nanocubes (20 nm) were also loaded onto
TNTs and showed effective antibacterial action against
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S. aureus and E. coli, causing eradication of these bac-
teria in laboratorial cultures (Rosenbaum et al. 2017).

In addition to NPs derived from metals, stud-
ies showed also the possibility of TNTs loading with
commonly used systemic antibiotics, especially those
targeting bacterial cell wall and protein synthesis.
Investigations have presented in vitro and in vivo
results involving TNTs loaded with vancomycin
(Zhang et al. 2013). Preliminary data suggested bet-
ter in vitro antibacterial performance against S. aureus
in the groups with nanotubes loaded with antibiotics
compared with TNTs-only control group (Zhang et al.
2013), suggesting that the application of antibiotics
in situ might be a viable alternative appropriate to this
technology.

Different outcomes of antibiotic loaded TNTs where
verified, and most often antibiotics might gener-
ate particularly interesting results. A pioneer study
in TNTs antibiotic loading used doses of gentamicin
against S. epidermidis in vitro (Popat et al. 2007).
Their results showed complete TNTs filling, as well as
reduction in bacterial surface adhesion and an increase
in the proliferation rate of pre-osteoblasts where the
antibiotic was used, revealing a double positive result
without interfering with implant biocompatibility
(Popat et al. 2007).

The most recent studies employing incorporation of
drugs, specific agents and NPs as antibacterial agents
into TNTs is summarized in Table 2, where their
promising results are described, revealing also the
“state of the art” of this technology.

Biomolecules and NPs immobilization through coatings

As the demand of active functionalization of different
biomedical implant surfaces rises, the need to investigate
how to properly seize/immobilize different types of drugs
or NPs on the implant surface escalates. Thus, a series of
investigations suggesting the use of ceramic, organic, or
inorganic materials as implant coatings are being con-
ducted with the objective of creating a protective stable
but resorbable layer that can gradually release the drug
once needed (Civantos et al. 2017).

The TNTs surfaces offer the possibility of chemi-
cal-physical coating adhesion on their surface along
with drug incorporation to their tubes. When evaluated
in vitro, biodegradable coatings showed excellent results
on titanium surfaces, positively influencing their biocom-
patibility with expressive results of bone cell proliferation
and adhesion (Goodman et al. 2013; Oliveira et al. 2017).
In addition, progressive coating degradation has been
characterized as a viable event that may allow the release
of drugs or NPs aiming to potentiate bone healing or
even prevent possible microbial infections (Oliveira et al.
2017). Figure 4 shows a schematic of how TNTs with
coatings stabilize the drugs in their tubes and materials,
which can be used to make these coatings.

Furthermore, some studies have even extrapolated
the incorporation of drugs or growth factors (GFs) not
only to their TNTs but into their coatings as well. Chi-
tosan coatings incorporated with GFs presented better
results in terms of cell adhesion, bone cell proliferation
and increase in the expression of bone formation markers
in vitro (Abarrategi et al. 2007). Also, Chitosan coatings
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Fig. 4 Schematics showing how coated TNTs may present stabilized drugs in their tubes and how some materials are applied to these coatings
(a), reprinted with permission from Elsevier, (Oliveira et al. 2017). Scheme showing how the release of drugs influences the behavior of bacteria (b),

were tested for antibiotic incorporation in vivo present-
ing promising results as well (Jennings et al. 2015; Lai
etal. 2017).

The combination of loaded TNTs with a drug-incor-
porated surface coating might represent an attractive
possibility for in loco treatment of a failing and/or com-
promised implanted device. However, studies investigat-
ing this possibility are scarce and, when available, still
at early stages, and so far there is no single definition in
terms of the best surface coating material or the ideal
drug to be implemented for these purposes in vivo.

One attempt to investigate the possibilities involv-
ing surface coating association with TNTs drug delivery

system was related to late local antibiotic-release activa-
tion (Wang et al. 2017a, b, ¢). In this investigation, nano-
tubes were firstly loaded with antibiotics and then sealed
with coordination polymers through a metal ion bond,
generating a hybrid system with potential antibacte-
rial properties. Reported in vitro observations revealed
that the antibiotic agent was kept inside the tubes until
the surrounding environment had its pH altered. As the
inflammatory process elicited by bacterial infection has
the potential to change the local pH, this in vitro drug
release system was activated, suggesting a possibility for
long-term local drug maintenance prior to its late release
(Wang et al. 2017a, b, ¢).
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In conclusion, the present overview critically analyzed
the significant diversity of drugs, metals and NPs pre-
senting antibacterial properties and their functionaliza-
tion on TNTs surfaces, depicting a wide range of these
potential metals and drugs used in biomedical implants
and related advanced research regarding their biocom-
patibility and potential antibacterial effects.

TiO, nanotubes surfaces show a large energy area for
immobilization and subsequent functionalization of nan-
oparticles, preserving its biocompatibility and mechani-
cal stability. Many strategies to incorporate NPs and
drugs to implant surfaces have been presenting promis-
ing preliminary results in combating bacteria that cause
infections in the human, and especially where biomedical
implants may be placed.

It has been suggested by some investigations that the
drug delivery system applied to TNTs might be success-
ful and has promising early results. Even though a large
part of these reported studies represent in vitro evidence,
the pathway for clinical trials involving concepts on the
application of drug delivery TNTs has already been sug-
gested, followed by more extensive cytotoxicity tests and
in vivo observations to firstly ensure their biologic safety.

The possibility of decreasing the application of systemic
antibiotics usually associated with side effects to patients
for an in situ usage seems to be one of these drug-loaded
TNTs most advantageous properties, since their associa-
tion with surface coatings may keep a drug and/or NP
active for a long-term gradual release once needed. Fur-
ther investigation in vivo should be performed to estab-
lish the proper advantages and efficacy linked to the
in situ application of antibiotics in biomedical implants
compared to systemic drug administration.

Finally, the use of functionalized TNTs aiming a local-
ized release of antibiotic drugs and bactericide NPs has
presented promising early results and should be further
explored aiming future medical applications. The pos-
sibilities related to local infection control may positively
influence the outcome of a major biomedical problem
related to implant loss and/or disfunction. With estab-
lished protocols regarding adequate drug dose and
production optimization, this technology can play an
important role into further increase the clinical success
of biomedical implants in the near future.

Abbreviations
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