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Optimal feed profile for the Rhamnolipid 
kinetic models by using Tabu search: metabolic 
view point
J. Satya Eswari* and Kannekanti kavya

Abstract 

Rhamnolipids are bio surfactants which are extra-cellular glycolipids composed of l-rhamnose and 3-hydroxyalka-
noics. Rhamnolipids are produced through fermentation process by using Pseudomonas sp. as the species. An altera-
tion to the traditional procedures in order to achieve increase in the production of biosurfactants, a numerous process 
technologies have been adopted in fed batch mode. Fed batch mode facilitates the high production of product by 
avoiding the substrate or product inhibition line of attack. To overcome the controlling parameters which reduce 
the product yield, optimal control profiles are designed. In order to develop viable control methods for fed-batch 
fermentation of Rhamnolipid production, multiple substrate feeding strategies were employed and their efficiencies 
were compared with different substrates concentration of glucose, nitrogen and phosphorous. The product formation 
depends upon the substrate feeding strategy and so, the fed-batch fermentation was carried out by using P. aerugi-
nosa providing substrates at manifold rates. With the obtained experimental data, using the kinetic models (logistic 
equation and by Luedeking Piret), the kinetic parameters were estimated. These kinetic parameters were imple-
mented in tabu search algorithm and this programme was executed in Dev-C++, optimal control profiles were gen-
erated as a result. These obtained optimal control profiles have shown an increase in productivity of rhamnolipid with 
a decline in computational time. Through this procedure, the optimal control profiles of substrate feeding strategies 
of glucose, nitrogen and phosphorous were estimated. In comparison with other algorithms like genetic algorithm, 
Tabu Search algorithm was able to generate an accurate optimal control profiles with a reduction in their intricacy.

Keywords:  Tabu search, Rhamnolipid, Kinetic constants, Optimal control profile, Genetic algorithms

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Introduction
Rhamnolipids are vital surfactants which are studied 
under glycolipids. These are surface-active metabolites 
produced by Pseudomonas sp. They are widely studied 
under glycolipid biosurfactants that possess the ability 
to reduce surface tension of water as the standard value 
reduces from 72 to 30 mN/m, and the interfacial tension 
of water/oil systems reduces from 43 mN/m to standards 
of about 1  mN/m (Satya Eswari et  al. 2013, 2016; Satya 
Eswari and Venkateswarlu 2016a, b; Prabu et  al. 2015). 
These are produced by using a number of substrates 
such as glucose, pyruvate, glycerol, succinate, molasses, 

vegetable oils, starch-rich waste from potato processing, 
hydrocarbons, waste fruit processing, waste crop residue 
and agro industrial waste etc. Rhamnolipids are used as 
a source for rhamnose, for the production of high-quality 
flavor compounds which have a number of applications 
in the cosmetic and healthcare industries and in the bio-
degradation and bioremediation of xenobiotic controls. 
Inspite of their potential applications, Rhamnolipid could 
not compete with chemical surfactants due to their pro-
duction budget and restricted productivity by micro-
organisms. This issue can be overcome with the use of 
higher yielding strain controlled systems, with metabolic 
engineering techniques, by adopting strain improve-
ment methods, with low capital and operating cost pro-
cesses, by use of media with economical substrates, by 
optimizing process parameters, and culturing strategies 
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with minimal or manageable by-products. Fermentation 
has three modes of operation namely the batch, the fed-
batch and the continuous process modes. Rhamnolipid 
Assembly by Pseudomonas aeruginosa in batch and fed 
batch routes have been studied and reported (Noh et al. 
2014; Zhu et al. 2012). Batch process occasionally leads to 
substrate inhibition and catabolite repression responsible 
for reducing the productivity of Rhamnolipid. Fed batch 
mode facilitates the high production of products by avoid-
ing the substrate or product inhibition strategies. The fed 
batch process of Rhamnolipid production is established 
to study and find the effect of substrate concentrations 
such as glucose, nitrogen and phosphorous. This paper 
represents fed-batch process with the mode of constant 
and exponential feeding control profiles are established 
to study the effects of glucose, nitrogen and phosphorous 
substrates to acquire the determined Rhamnolipid forma-
tion from P. aeruginosa. This paper also presents a study of 
the influence of various bioprocess parameters and opti-
mization of control parameters. Kinetics of Rhamnolipid 
construction conditions were studied from (Delima et al. 
2009). Development of control profiles by using various 
methodologies such as Tabu search and genetic algo-
rithms were explored in bio and chemical processes due 
to their enormous advantages. (Beluham et  al. 1995; 
Chen et  al. 1998; Lin and Miller 2004). The main objec-
tive of this study is to build a mathematical model that 
relies on its potential parameters to estimate the quantity 
of the Rhamnolipid production by P. aeruginosa. These 
estimated parameters are introduced in biomass produc-
tion. The substrate and product kinetic models for Rham-
nolipid production are solved by using mathematical 
models and the Tabu search algorithm is used to develop 
the optimal control profiles. The generation of these con-
trol profiles plays a crucial role in overcoming the limita-
tions of microbial surfactants for commercial utilization.

Materials and methods
In this fed batch experiment, the P. aeruginosa strain 
was collected and cultured in 250 ml MCKeen Media, by 
maintaining pH 7.0 at 30 °C. The limiting substrates were 
in portion of 250 ml of MCKeen media with a composi-
tion of glucose (10.0 g/l), NH4NO3 (1.7 g/l), yeast extract 
(5.0  g/l), MgSO4·7H2O (0.2  g/l), KH2PO4 (3.0  g/l) and 
Na2HPO4 (7.0  g/l). This complete procedure is carried 
out in an orbital shaking incubator at 160 rpm. After 48 h 
of incubation the samples are collected and centrifuged 
at 8000 rpm for 10 min and supernatant is collected. By 
using two feeding strategies Limiting substrates were 
added to MCKeen Media at particular time intervals, 
namely: Constant Feeding Strategy and Exponential 
Feeding followed by Constant feeding strategy.

Kinetic modeling and kinetic parameter estimation
Batch and fed batch studies kinetic parameter estimation 
and kinetic model construction
These models express that growth and product formation 
as a function of only biomass with evolution over time. 
Changes in biomass and Rhamnolipid production were 
represented by equations. Temporal variations in nutri-
ent levels (glucose, nitrogen, and phosphorous) were 
defined by equations at Table 1.

Cellular growth modelling
The specific growth rate was expressed as a function of 
cellular growth only by means of the logistic equation 
described by Verhulst (1845) and Pearl and Reed (1920) 
in Bailey and Olli’s where μmax is the maximum specific 
growth rate (1/h) and X is the maximum obtained cell 
concentration is shown in Eq. (1) in Table 1.

Product formation
Product formation kinetics described by Leudeking Piret 
model. In this work, model used to predict the Rham-
nolipid concentration during the time passage of fer-
mentation. The Leudeking Piret model combines both 
growth associated and non-growth associated contribu-
tions. Rendering to this model, the product construction 
level depends upon both the instantaneous biomass con-
centration, X and cell progression rate, dx/dt in a direct 
linear style. Where α and β were growth and non-growth 
associated constants that may vary with fermentation 
conditions. The graph was plotted between [P] vs. (t) 
gives the constant α and β. Shown in Table 1, Eq. (3) sup-
ported by Eq. (4).

Substrate consumption and yield coefficients
A part of the substrate used for conversion of cell mass, 
a part used for product formation and another part for 
maintenance Table 1, Eq.  (5) supported by Eq.  (6). Yield 
coefficients of substrate and yield coefficients of prod-
uct. The ratio of amount of biomass produced to the 
amount of substrate utilized is sited at Table  1, Eqs.  (9, 
10, 11 and 12) represents the ratio of amount of biomass 
produced to amount of substrate utilized in Fed-Batch 
Fermentation.

Theory and optimization algorithm
Tabu search algorithm
This paper presents the solicitations of the artificial intel-
ligence method called Tabu Search to design the feed rate 
controller of a bioprocess. The Tabu Search model is suit-
able for the work presented in the paper as the reiterative 
calculation is needed for searching the best solution for 
the control profile. The results show that this technique 
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provides the better output waveforms compared with 
those designed from the classical method.

Tabu search engine—optimal control
The Tabu search algorithm is search engine which is 
required to find the global optimum of a function over 
solution space of all possible solutions. Tabu Search uses 
particular coordinated strategies using adaptive memory 
to generate progressive sequence solutions. These pro-
gressive sequence solutions are then recognized as the 
best solutions, which are picked for recurring iterations. 
The current best solutions are stored in distinctive mem-
ory. The Tabu list is familiarized in this way in order to 
escape the possibility of selecting previously visited solu-
tions. Another benefit of this memory usage in Tabu list 
is that it helps to escape local optimal solutions and to 
prevent cycling, and the information in Tabu list helps 
to guide the move from the current solution to the next 
solution. The fundamental version of Tabu Search used in 
this study is depicted in the schematic flowchart in Fig. 1.

The first step in Tabu Search is involved in the gen-
eration of initial solutions randomly. The second step 
is the neighborhood generation for each of these initial 
solutions. The current solution collectively moves with 
neighborhood of impending “next solutions” with the 
shortest path. An aspiration criterion allows the Tabu 
search algorithm to prevent any occasional moves which 
lead to unvisited solutions. The aspiration criterion is a 
condition under which the Tabu status of a certain move 
can be superseded. After reaching optimum path, the 
Tabu list is prepared. When best neighbor is not superior 

to the current solution, it is categorized as a Tabu and 
added to the recency-based Tabu list. As new solutions 
are added to the Tabu list, older solutions are unre-
stricted from the bottom. Thus, the Tabu list stores the 
most recently visited solutions and stops re-examining 
dubious solutions for a predefined number of iterations. 
It follows a restart mechanism as well, making decisions 
for future searches based on advanced information. The 
use of an adaptive reminiscence allows Tabu Search 
to “acquire” and generate a more flexible and effec-
tive search strategy than the “memory less” methods, 
such as simulated annealing (SA) and genetic algorithm 
(GA). Subsequently the neighborhood’s sieve to exclude 
Tabu moves, and a subset of candidate moves have been 
selected, and both the neighbor’s in the subset are evalu-
ated. The best neighbor (having the highest evaluation) is 
selected, and becomes the “initial” solution for the next 
iteration. Often the objective functions contribute the 
base for the assessment, even though additional concerns 
can also enter. The objective function value itself can be 
manipulated before the selection. A stopping criterion is 
needed to stop the search process when the optimum is 
reached. The simplest form of stopping criterion could be 
to set a fixed number of iterations or a given computa-
tional effort.

Genetic algorithms
Genetic algorithms are search based algorithms which 
have higher probability of finding a global optimum as 
they use potential solutions and probabilistic transition 
rules to create a set of new solutions. Genetic algorithms 
scramble the candidate solutions of the optimized algo-
rithm as a string of characters which are usually binary 
digits. Genetic algorithms consider random strings to 
form inhabitants and updates iteratively in search of 
good solutions, which consider each iteration as a gen-
eration. A typical genetic algorithm requires a genetic 
representation of the solution domain and a fitness func-
tion to evaluate the solution domain. Once the genetic 
representation and the fitness function are defined, a 
GA proceeds to initialize a population of solutions and 
then to improve it through repetitive application of the 
mutation, crossover, inversion and selection operators. 
In order to attain the accuracy with a four bit coding, 
approximately 1/16th of the search space is needed. If the 
string length is increased by one, the accuracy increases 
exponentially to 1/32th of the search space. Taking the 
initial population size of an algorithm as N it considers 
the random strings as a variable Then compute the prob-
ability of each string derivative into the reproducing pool, 
by dividing with population size N. A fitness function 
F is derived and used in successive genetic operations 
Fang et al. (2003). The fitness of each discrete individual 

Table 1  Batch and fed batch kinetic equations
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in the population is assessed through the cost func-
tion and new-fangled individuals are generated by using 
genetic operators (Changyu et  al. 2007; Gupta and Sex-
ton 1999). The genetic operators are involved in creat-
ing a list of solutions which perform various operations. 
In the crossover operation, new strings are produced by 

swapping information among strings in the reproduc-
ing pool. In single point cross over, two strings in the 
reproducing pool are selected at random and some por-
tions of the strings are exchanged between the strings. 
The reproduction operator chooses noble strings and the 
crossover operator recombines noble strings together 
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Fig. 1  X-axis represents time interval, Y-axis represents substrates (S1,S2,S3) and rhamnolipid (P)
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to optimistically create an improved sub-string (Var-
namkhasti et al. 2012; Ozcelik and Erzulumla 2006). The 
mutation operator varies a string locally to optimistically 
create a novel string. In every cycle, new population is 
generated, estimated and verified for termination. The 
generational process is repeated until a termination con-
dition has been reached. Common terminating condi-
tions are said to be met when the solution is found that 
satisfies minimum criteria, when a fixed number of gen-
erations have been reached, or when allocated budget 
(computation time/money) has been reached. Other con-
ditions for termination could be when the highest rank-
ing solution’s fitness is reaching or has reached a plateau 
such that successive iterations no longer produce better 
results or by manual. If the termination criterion is not 
met, the population is iteratively operated by the above 
three operators and estimated.

Results
Experimental results
Experiments are conducted by using the fed batch mode 
for Rhamnolipid production by using P. aeruginosa with 
both constant and exponential substrate feeding strat-
egies. With a time interval of 4  h the substrate feed-
ing concentrations were noted down. After conducting 
experiments the Rhamnolipid, biomass and substrate 
depletion was measured. Experimental data is repre-
sented in Fig. 2.

Batch kinetic parameter estimation results
The specific growth rate was expressed as a function of 
biomass only by using the logistic equation. Batch kinetic 
parameters are calculated with the help of logistic and 
Leudeking Piret Models. The obtained experimental data 
represented in Fig. 2 is then used to establish the batch 
kinetic constants. By using multiple linear regressions, 
the estimated batch kinetic constants for substrate deple-
tion and product formation and given in Table 2 and esti-
mated parameters are represented graphically in Fig. 1.

Fed‑batch kinetic parameter estimation
The development of a feeding strategy in a fed-batch 
culture for biomass growth to control the substrate con-
centration at its optimal level. This is essential to attain 
a maximal cell concentration and high biomass produc-
tivity. In addition, this approach affects the overall PHB 
(Poly-β-hydroxybutyrate) productivity by preventing the 
premature shifting to phase 2. In this study, two types 
of substrate feeding strategies were employed one is 
the constant feeding strategy where the other exponen-
tial substrate feeding strategy to maintain the substrate 
concentrations within an optimal range. First, a series 

of experiments were performed to determine the initial 
substrate concentrations (S0) such as glucose (G0), nitro-
gen (N0), and phosphorous (P0). These results indicate 
that the initial concentration of the substrate signifi-
cantly affects the specific growth rate, which is found to 
be at a maximum at the initial substrate concentration. 
A decrease in growth rate was observed at the higher 
substrate concentrations. By using standard models such 
as the logistic model and Leudeking Piret Model, the 
kinetic parameters were estimated mention in Table  3 
which represents all the kinetic constants determined by 
graphical regression method by constant and exponential 
feeding strategies using glucose, nitrogen, phosphorous 
as substrates.

Constant and exponential feeding strategy
During fed-batch fermentation, the glucose concentra-
tion has an optimal range for cell growth and synthesis of 
the target product. The growth of cell would be very slow 
if the glucose concentration fall below the lower limit, 
while the organic acids were synthesized to a great extent 
in the presence of high glucose concentration. Before 
establishing kinetic models for this process, the general 
range of glucose concentration must be determined. For 
this, Leudeking Piret kinetic models are established. By 
using the equations at Table  1 the kinetic models are 
solved with the experimental data. Table  4 represents 
constant substrate feeding strategy and exponential sub-
strate feeding strategy parameter (1) signify constant 
substrate feeding strategy whereas parameter (2) signify 
exponential substrate feeding strategy both parameters 
consist of serial numbers which determine cell growth 
rate, product formation rate, substrate formation rate, 
yield coefficient of substrates, yield coefficient of prod-
uct with glucose, nitrogen, phosphorous as substrates. In 
Fig.  3 the constant glucose, nitrogen, and phosphorous 
with the corresponding product are graphically repre-
sented, followed by exponential feeding strategy in Fig. 4.

Tabu search optimal control strategy
The optimal control strategy of glucose, nitrogen and 
phosphorous were established by using Tabu search. 
The optimal parameters selected are given in Table  4. 
The algorithm is written as a program reference at Fig. 5 
with a lower limit of −0.01 and with a upper limit of 0.01, 
with time interval as 4 h and final time given as 48 h fol-
lowed by 5, 25, 50, 100 iterations initially which results 
in generations of new neighbor solutions. For the 5, 25, 
50 iterations the solutions are formed by the respective 
equations and results into formation of Tabu list from 
these neighbor solutions best solution is picked and it 
is crosschecked whether it follows aspiration criteria 
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or not the one which follows aspiration criteria that is 
the condition for convergence results into formation of 
base solution. These base solutions undergo termination 

which gives optimal output solution following each itera-
tion. By tuning the C program with Lower limit as 0.01 
and upper limit as 0.06 and by tuning various constant 
parameters such as setting iteration as 100, the glucose, 
nitrogen, phosphorus, both at constant and exponential 
feeding strategy give positive optimal solutions with a 
time interval of 4 h represented in Fig. 6.

Comparative methods: genetic algorithms
The optimal control profiles (constant feeding and expo-
nential feeding strategy with glucose, nitrogen and 

Fig. 2  Tabu search algorithm

Table 2  Batch kinetic constants

Alpha (α) Beta (β)

Glucose 0.6111 0.0002

Nitrogen 0.0112 −0.000003

Phosphorous 0.1765 −0.000005

Rhamnolipid 0.3091 −0.000009
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phosphorous) obtained by using genetic algorithms are 
generated. The optimal parameters selected are Pc = 0.7, 
Pm  =  0.08, selection method is roulette wheel. With 
this method the Rhamnolipid concentration was not 
increased as expected.

Discussion
Nutritional requirements are major factors for Rham-
nolipid enhancement process. The type, quality and 
quantity of bio-surfactant produced are influenced by 
the nature of the substrate, the concentration ions in the 

Table 3  Fed batch kinetic constants and Tabu search parameters

Constant feeding rate Exponential feeding rate

Glucose Nitrogen Phosphorous Glucose Nitrogen Phosphorous

Umax 0.0258 0.1283 0.01161 0.1366 0.123 0.12

l1 0.01 0.01 0.01 0.01 0.01 0.01

h1 0.01 0.01 0.01 0.01 0.01 0.01

F 0.45 0.45 0.45 0.45 0.45 0.45

Ki 0.01 0.01 0.01 0.01 0.01 0.01

Si 0.29 0.071 0.1104 0.07 0.009 0.0558

Sgf 0.41 1.56 1.5 0.87 1.48 1.42

Snf 0.1196 0.0495 0.2779 0.0109 0.0393 0.3184

Spf 0.0755 0.0567 0.2987 0.1099 0.0453 0.0326

Alpha (α) 0.824 0.633 0.966 0.07512 0.0078 0.891

Beta (β) 1 0.699 2.59 5.0972 0.4246 0.282

Gamma (γ) 0.85 −12.725 2.4 0.6763 13.298 −3.177

eta (η) 0.45 −7.5772 1.3 2.5618 9.9924 −0.999

Ks 0.387 5.0972 1.28 0.683 0.0106 −0.00468

Muf 0.005 0.0086 0.006 0.005 0.011 0.008

Y 0.421 0.421 0.421 0.421 0.421 0.421

Xf 3.04 3.12 2.87 3.14 3.32 3.02

Pf 0.637 0.626 0.734 0.734 0.666 0.634

Sf 0.41 0.0495 0.87 0.87 0.393 0.0326

Table 4  Kinetic model parameter substituted in equations

Parameters Serial no. Models Glucose (A) Nitrogen (B) Phosphorous (C)

Constant feeding strategy (1) 1 Cell growth rate (μm) 0.13 0.12830 0.1161

2 Product formation rate (α, β) 0.824, 1 0.633, 0.699 0.966, 2.59

3 Substrate formation rate (γ, η) 0.85, 0.45 −12.725, −7.5772 2.4, 1.3

4 Yield coefficient of substrate (glucose) −0.00948 −0.005 −0.00936

5 Yield coefficient of substrate (nitrogen) −0.06502 −0.00192 −0.0032

6 Yield coefficient of substrate (phosphorous) −0.05958 −0.00193 −0.003

7 Yield coefficient of product −0.00936 −0.30264 −0.25359

Exponential feeding strategy (2) 1 Cell growth rate (μm) 0.1366 0.133 0.12

2 Product formation rate (α, β) 0.07512, 5.0972 0.0078, 0.4241 0.891, 0.282

3 Substrate formation rate (γ, η) 0.6743, 2.548 13.298, 9.9924 −3.177, −0.999

4 Yield coefficient of substrate (glucose) −0.48396 −0.00507 −0.00488

5 Yield coefficient of substrate (nitrogen) −0.06502 −0.00192 −0.0032

6 Yield coefficient of substrate (phosphorous) −0.05958 −0.00193 −0.003

7 Yield coefficient of product 0.114277 −0.30264 −0.25359
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medium, and the culture conditions, such as pH, tem-
perature, agitation and dilution rate in continuous cul-
ture (Rodrigues et al. 2007). The fed-batch processes start 

with the cells being grown under the batch conditions, 
usually until close to the end of the exponential growth 
phase. At this point, the solution of substrate (nutrients) 

Fig. 3  Batch kinetic constants and product constants graphically

Fig. 4  Constant feeding strategy with respect to time
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is fed into the reactor, without the removal of the cul-
ture fluids. This feed should be balanced enough to keep 
the growth of the microorganisms at a desired specific 
growth rate and simultaneously reducing the produc-
tion of by-products. Substrates such as glucose, nitro-
gen and phosphorous are added to the culture, and the 
metabolic changes were seen in the metabolic pathway of 

Rhamnolipid production by P. aeruginosa. Coming to the 
metabolic pathway of Rhamnolipid production by P. aer-
uginosa (Satya Eswari et al. 2016) which is given in Fig. 7, 
shows that the Rhamnolipid production is influenced by 
the presence of the three substrates depending on their 
feeding profiles. Glucose is converted as rhamnose with 
an intermediate supply of nitrogen to acetyl CoA and 

Fig. 5  Exponential feeding strategy with respect to time

Fig. 6  Optimal control profile for constant and exponential feeding strategy
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glucose is also involved to form a TDP-α-d-Glucose with 
intermediate supply of phosphorous. Three substrates 
such as glucose, nitrogen, phosphorous combination 
leads to mono Rhamnolipid production. Excess supply 
of these three substrates leads more amount of rham-
nose production hence it may not be involved in lipid 
formation. Inadequate supply of these three substrates 
causes a condition of starvation and hence the produced 
rhamnose is consumed by the P. aeruginosa. In Fig.  6 
optimal control profiles of both constant and exponen-
tial substrate feeding strategy are given. Represent the 
Importance of substrates and their feeding strategies in 
Rhamnolipid production.

Rhamnolipid as biosurfactants has got potential appli-
cations in medical, pharmaceutical and food industries 

produced by species P. aeruginosa. To reduce the effect of 
parameters on production of Rhamnolipid, and to meet 
the desired objectives of product formation, the control 
profiles of substrate feeding strategy were developed. The 
optimal feed rate for Fed-Batch Fermentation process of 
Rhamnolipid production by pseudomonas aeruginosa has 
been developed in this study. The Tabu search algorithm 
is applied to the fermentation process with multiple types 
of substrate feed strategies. Limiting the feeding strate-
gies of substrates as a controlling parameter, the produc-
tion of Rhamnolipid was increased. The various kinetic 
coefficients of constant and exponential feeding strat-
egy are determined by using multiple linear regressions 
method. These limiting feeding strategies of substrates 
also act as a parameter for the Tabu algorithm. By using 

Fig. 7  Rhamnolipid production from Pseudomonas aeruginosa
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Tabu algorithm which was implemented in Dev-C++, the 
optimal control profiles were generated. These optimal 
control profiles reduce the singular control problems and 
the computational difficulties were not confronted. The 
results obtained were within the permissible limits when 
compared with the concentration of initial substrates 
(S0). The Tabu search algorithm may be very promising in 
obtaining practically feasible and desirable control profiles 
which is also important for challenging problems. There-
fore, it is easy to use even for very complicated problems 
that regulate yield on singular control systems like sub-
strates. In this study glucose, nitrogen and phosphorous 
was preferred for increasing Rhamnolipid production, 
and the glucose, nitrogen and phosphorous concentration 
feeding profiles were successfully generated. For compara-
tive studies genetic algorithms are used and optimal con-
trol profiles are reported.

Abbreviations
F: volumetric glucose feed rate (l/h); Fmax: maximum 
volumetric substrate feed rate (l/h); Ki: substrate inhi-
bition constant for growth (g/l); K0i: substrate inhibi-
tion constant for Rhamnolipid production (g/l); Ks: 
monod kinetic constant (g/l); Ks

0: saturation constant 
for qp (h±1); P: ethanol concentration (g/l); pm: maxi-
mum Rhamnolipid concentration for cell growth (g/l); 
pmP: maximum Rhamnolipid concentration for Rham-
nolipid production (g/l); pi: Rhamnolipid threshold con-
centration for Rhamnolipid production (g/l); qp: specific 
product formation rate (h±1); qpm: maximum specific 
Rhamnolipid production rate; S: substrate concentra-
tion (g/l); S0: initial substrate concentration (g/l); sF: feed 
concentration of substrate (g/l); Si: threshold substrate 
concentration for cell growth; V: working volume of the 
fermenter (l); VF: total working volume of the fermenter 
(l); x: biomass concentration (dry weight) (g/l); Xmax: 
maximum cell concentration at dense packing (g/l); Yp/s: 
Rhamnolipid yield (0.47 g/g); M: maintenance coefficient; 
Umax: cell concentration growth rate (l/h); Sgf: Substrate 
glucose final value at time 48  h; Snf: substrate nitrogen 
final value at time 48 h; Spf: substrate phosphorous final 
value at time 48  h; Muf: maximum u value at specific 
feeding strategy; Xf: biomass value at time interval of 
48 h; Pf: product value at time interval of 48 h; Sf: sub-
strate value at time interval of 48 h at constant/exponen-
tial substrate feeding strategy; G0: initial glucose nitrogen 
phosphorous concentration (g/l); N0: initial nitrogen 
concentration (g/l); P0: initial phosphorous concentra-
tion (g/l); Alpha: growth associated parameter for prod-
uct formation; Beta: non growth associated parameter for 
product formation; Gamma: growth associated param-
eter for substrate formation; Eta: non growth associated 
parameter for substrate formation.

Tabu search algorithm
I: index of the neighbor solution; k: current iteration 
number; kcenter: determines at what fraction of total itera-
tions s (k) = 0.5; L: length of both tabu lists; m: maximum 
number of iterations; n: coefficient determined accord-
ing to the complexity of problem; NNeigh: total number 
of neighbor solutions generated at each iteration; Nvar: 
number of variables; P: random number with uniform 
distribution; S(k): value of the sigmoid function.
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