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Abstract 

An anaerobic mesophile, Clostridium cellulovorans, produces a multienzyme complex called the cellulosome and 
actively degrades polysaccharides in the plant cell wall. C. cellulovorans also changes cellulosomal subunits to form 
highly active combinations dependent on the carbon substrate. A previous study reported on the synergistic effects 
of exoglucanase S (ExgS) and endoglucanase H (EngH) that are classified into the glycosyl hydrolase (GH) families 
48, and 9, respectively. In this study, we investigated synergistic effects of ExgS and EngK, a GH9 cellulase different 
from EngH. In addition, since EngK was known to produce cellobiose as its main product, the inhibition on cellulase 
activity of EngK with cellobiose was examined. As a result, the effect of cellobiose inhibition on EngK coexistent with 
ExgS was found to be much lower than that with EngH. Thus, although EngH and EngK are in the same GH9 family, 
enzymatic activity in the presence of cellobiose was significantly different.
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Introduction
C. cellulovorans, an anaerobic mesophile, efficiently 
degrades polysaccharides by producing an extracellu-
lar multienzyme complex called the cellulosome (Doi 
and Tamaru 2001; Doi et al. 1994; Goldstein et al. 1993; 
Shoseyov et al. 1992; Sleat et al. 1984; Takagi et al. 1993). 
Previous study reported that a cellulosomal gene cluster 
cbpA-exgS-engH-engK-hbpA-engL-manA-engM-engN 
was found in the C. cellulovorans genome (Tamaru et al. 
2000; Tamaru et  al. 2010). Additionally, EngE belong-
ing to glycosyl hydrolase (GH) family 5 plays important 
roles on cellulose degradation (Shoseyov and Doi 1990; 
Tamaru and Doi 1999). A previous genome sequence 
analysis revealed that this organism has genes encod-
ing 17 cellulosomal cellulases, 10 cellulosomal hemi-
cellulases and 63 non-cellulosomal enzymes related to 
degradation of polysaccharides such as cellulases and 

hemicellulases, but also pectinases (Doi et  al. 1998; 
Tamaru et al. 2010, 2011). An expression pattern of pol-
ysaccharolytic enzymes was changed for degradation 
of each carbon source (Han et al. 2003, 2004; Han et al. 
2005; Yamamoto and Tamaru. 2014). However, prot-
eomic analysis reported that EngH (GH9), EngK (GH9) 
and ExgS (GH48) were produced rather abundantly and 
consistently irrespective of the type of growth substrates 
(Fig.  1, Matsui et  al. 2013; Morisaka et  al. 2012). These 
results indicated that these enzymes played a critical role 
on cellulose degradation. On the other hand, the prop-
erties of cellulosomal family 9 cellulases EngH, EngK, 
EngL, EngM, and EngY in C. cellulovorans were ana-
lyzed in previous studies (Arai et al. 2006). These studies 
showed that cellulosomal family 9 cellulases had different 
activities against various cellulases such as carboxym-
ethyl cellulose (CMC) and crystalline cellulose (Avicel), 
although they are all classified as GH9. Synergistic effects 
of cellulosomal subunits EngH and ExgS were studied 
(Murashima et al. 2002). However, the synergistic effects 
of EngK and ExgS have not been studied as yet.
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In this study, the synergistic effects of ExgS (GH48) and 
EngK (GH9) or EngH (GH9) in the presence of cellobiose 
were compared.

Methods
Bacterial strains and media
C. cellulovorans (ATCC 35296) was used as the source 
of chromosomal DNA. Escherichia coli HST08 (TaKaRa) 
and origami (Novagene) were used for the construc-
tion of plasmids and cloning host for the production of 
recombinant proteins, respectively.

Plasmid construction and expression of recombinant 
proteins
Recombinant EngK, ExgS, and EngH were expressed 
with the pCold-I (TaKaRa) vector and pCold-TF vector 
(TaKaRa), respectively. DNA fragments encoding each 
gene were amplified by polymerase chain reaction from 
the C. cellulovorans chromosomal DNA with the primers 
containing restriction sites (Table 1). The amplified PCR 
fragments were digested with restriction enzymes and 
inserted into pCold-I or pCold-TF digested with the same 
pair of restriction enzymes to generate pCold-I-EngK, 
pCold-I-ExgS and pCold-TF-EngH. E. coli origami har-
boring pCold-I-EngK, pCold-I-ExgS and pCold-TF-EngH 

were grown at 37  °C in Luria–Bertani medium supple-
mented with ampicillin (100 µg/ml) to an optimal density 
at 600 nm of 0.4–0.5. The culture was supplemented with 
a final concentration of 0.5  mM isopropyl-ß-d-thioga-
lactoside (IPTG) and growth continued at 15 °C for 24 h. 
The culture was refrigerated at 15  °C quickly and left to 
stand for 30 min.

Purification of recombinant proteins
The cultured E. coli cells were harvested by centrifu-
gation, and were washed and disrupted by sonication. 
Cell debris was removed by centrifugation. The cell-free 
extracts were centrifuged (for 30 min at 4 °C at 20,000g) 
and separated from the supernatant and the pellets, 
respectively. TF-EngH was purified from the superna-
tant. EngK and ExgS were purified from the pellets. The 
supernatant (for TF-EngH) was applied onto HisTrap HP 
(GE healthcare) and eluted by 20  mM phosphate buffer 
(pH 7.4) containing 500  mM NaCl and 500  mM imida-
zole. The trigger-factor (TF) tag was removed from TF-
EngH by HRV-3C protease (Novagen). The pellets (for 
EngK or ExgS) were solubilized with 8 M urea and rena-
tured essentially as described previously (Liu and Doi 
1998). The purified enzymes containing the fractions 
were dialyzed against 50 mM acetate buffer (pH 6.0). The 

Fig. 1  Schematic models for EngK, EngH and ExgS from C. cellulovorans. Numbers in the schematic models indicate glycoside hydrolase (GH) family. 
Protein names (Eng) and the length of amino acid sequence (aa) are represented on the left and right sides, respectively, of the models

Table 1  Designs of primers used in this study

Primer Sequence Restriction site Prasmid

engH-TF-F GTTCTCGAGTTATCAGGAATCTTGGGTGCAACTTC XhoI pCold-TF-engH

engH-TF R TTAGGATCCCTGATAAAAGTAG BamHI pCold-TF-engH

sacI-engK TTGAGCTCATGCGTAGTAAAAAATTAATAGCTTG SacI pCold-I-engK

engK-xhoI CCCCTCGAGTTAAGAAAGAAGTTTCTTCT XhoI pCold-I-engK

sacI-exgS GGGAGCTCATGAGAAAAAGATTAAATAAGATCGTTG SacI pCold-I-exgS

exgS-xhoI CCCCTCGAGTTAAGCAAGAAGTGCTTTCT XhoI pCold-I-exgS
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concentration of purified proteins was measured by pro-
tein assay kit from Bio-Rad, using bovine serum albumin 
as the standard.

Enzyme assay
Enzyme activities were assayed in the presence of 
0.5  % (wt/vol) concentration of acid-swollen cellulose 
at 37  °C in 50  mM acetate buffer (pH 6.3) containing 
2.5  mM CaCl2, 0.08  mg/ml tetracycline and 0.06  mg/
ml cycloheximide. Final enzyme concentration was 
prepared at 20  nmol/ml. Samples were collected and 
immediately boiled for inactivation of the enzymes. 5 or 
10 mg/ml of cellobiose were added to the enzyme assay 
mixture for inhibition of synergistic activities among 
EngH, EngK, and ExgS. The reducing sugars were deter-
mined by the DNS method, as d-glucose equivalents. 
Activities were expressed in units, 1  U defined as the 
amount of enzyme releasing 1  µmol of reducing sugar 
per min.

Results
Synergy effect on acid swollen cellulose 
between recombinant proteins EngK, EngH and ExgS
Purification of individual recombinant enzymes, EngH, 
EngK and ExgS is shown in Fig. 2. Figure 3 and Table 2 
show the synergy effects on activities against acid-swol-
len cellulose between the recombinant enzymes among 
EngH, EngK and ExgS. Specific activities of ExgS, EngK 
and EngH were 0.107, 0.102 and 0.149, respectively. As 

previous studies, the synergistic effect between ExgS 
and EngH was detected. The mixture of the recombinant 
enzymes of ExgS and EngH showed the highest specific 
activity (0.251 U/μmol) at a molar ratio of ExgS to EngH 
of 50:50 %. On the other hand, the mixture of the recom-
binant enzymes of ExgS and EngK showed specific activ-
ity of only 0.119 U/μmol at the most (molar ratio of ExgS 
to EngK of 75:25 %).

Inhibition of synergistic activities among EngH, EngK, 
and ExgS by cellobiose
Enzymatic activities of all recombinant enzymes and 
their synergistic activities were inhibited by 5  mg/ml 
cellobiose (Fig. 3; Table 2). The inhibition rates of ExgS, 
EngH or EngH were 98.5, 90.1 or 98.7 %, respectively. The 
highest specific activity of the mixture of EngH and ExgS 
was 0.251. The activity was inhibited to 0.017, that is, the 
inhibition rate was 93.4 %. In contrast, the inhibition rate 
of the mixture of EngK and ExgS was 56.1 %, when the 
molar ratio of EngH to ExgS was 25:75 %. The synergistic 
activity of EngK and ExgS containing 5 mg/ml cellobiose 
was more than twice the synergistic activity of EngH and 
ExgS. No activities were detected in each reaction mix-
ture in presence of 10 mg/ml cellobiose.

Discussion
Synergistic effects with either EngK or EngH and ExgS 
were detected in the assay against acid-swollen cellulose 
(Fig. 3; Table 2). These synergies were lower than the syn-
ergy between EngH and ExgS that has been reported in a 
previous study (Murashima et al. 2002). In addition, the 
inhibition of synergistic effect by cellobiose was different 
between EngH and EngK (Fig. 3; Table 2). The inhibition 
of EngK with ExgS by cellobiose was lower that of EngH 
with ExgS. These results indicated that the difference 
between EngH and EngK is not only with their enzymatic 
properties but also with their synergistic effects.

EngK has enzymatic activity against cellotriose (Arai 
et  al. 2006). R. cellulolyticum Cel9E (GH9) can cleave 
cellotriose, cellotetraose and cellopentaose to cello-
triose, cellobiose and glucose (Gaudin et  al. 2000). In 
particular, cellobiose constitutes more than 90  % of 
products when Cel9E cleaves Avicel (Ravachol et  al. 
2014) or amorphous cellulose (Gaudin et  al. 2000). In 
addition, the crystalline structure of Cel9G has already 
been revealed; EngK has fewer aromatic residues than 
Cel9G (Mandelman et  al. 2003). For this reason, it 
appears that cellobiose does not remain for a long time 
in the active-site cleft, and oligosaccharides can easily 
fit with the active-site cleft even in the presence of cel-
lobiose. Furthermore, the previous study indicated that 
EngK does not produce oligosaccharides longer than 
cellotriose (Arai et  al. 2006). Identity of amino acid 

Fig. 2  SDS-PAGE of the purified recombinant enzymes. The gel was 
stained with Coomassie brilliant blue R-250. Lanes M protein molecu‑
lar mass standard; lane K EngK; lane S ExgS; lane H EngH
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sequences between EngK and EngH was low, whereas 
identity of amino acid sequences between Cel9G and 
EngH was high. Furthermore, enzymatic properties of 

EngK and EngH were quite different. These differences 
would be revealed by crystal structure analysis of EngK, 
and particularly by co-crystallization EngK and cello-
biose. Three-dimensional models for EngH and EngK 
based on homologues of known structure also would 
help in these predictions. According to the models, 
the cleft of EngK was shorter than the cleft of EngK. In 
EngH and EngK, the number of aromatic amino acids, 
and histidine in the putative active site cleft of EngH 
and EngK were seven, two and six, one, respectively 
(Fig. 4).

The importance of EngE (GH5), ExgS (GH48) and 
EngH (GH9) which are main subunits in the C. cellulo-
vorans cellulosome has been reported by a number of 
studies. Synergistic effects between those cellulases were 
demonstrated by many enzymatic studies. Some of these 
studies have found that the enzymatic property of the cel-
lulosome changes depending on the subunit composition 
of the cellulosome. On the other hand, new insights of 
synergistic effects between EngK (GH9) and ExgS under 
the inhibition by cellobiose were shown in this study. 
Complexation of cellulosomal enzymes perhaps change 

Fig. 3  Specific activities of recombinant EngK and ExgS against acid-swollen cellulose. Two cellulosomal subunits were mixed at various composi‑
tions as shown in the X axes. The total concentration of enzymes was fixed at 20 nmol/ml

Table 2  Synergy degrees and  the inhibition of  cellulases 
activity on cellulose by cellobiose

a  The synergy degrees are shown as the actual activities divided by the 
summation of each cellulases activity

Molar percentage  
of enzyme (%)

Synergy degreea Inhibition rate (%)

ExgS EngK EngH

100 – – – 98.5

75 25 – 1.120 84.8

50 50 – 1.073 58.9

25 75 – 0.824 56.1

– 100 – – 90.1

75 – 25 2.011 95.6

50 – 50 1.958 93.4

25 – 75 1.549 89.7

– – 100 – 98.7
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their inhibition by cellobiose. These results supported 
previous studies on the cellulosome of C. cellulovorans 
and the other clostridia.
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