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Purification and properties of
S-hydroxymethylglutathione dehydrogenase of
Paecilomyces variotii no. 5, a
formaldehyde-degrading fungus
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Abstract

S-hydroxymethylglutathione dehydrogenase from Paecilomyces variotii No. 5 strain (NBRC 109023), isolated as a
formaldehyde-degrading fungus, was purified by a procedure that included ammonium sulfate precipitation, DEAE-
Sepharose and hydroxyapatite chromatography and isoelectrofocusing. Approximately 122-fold purification was
achieved with a yield of 10.5%. The enzyme preparation was homogeneous as judged by sodium dodecyl
polyacrylamide gel electrophoresis (SDS-PAGE). The molecular mass of the purified enzyme was estimated to be
49 kDa by SDS-PAGE and gel filtration, suggesting that it is a monomer. Enzyme activity was optimal at pH 8.0 and
was stable in the range of pH 7.0–10. The optimum temperature for activity was 40°C and the enzyme was stable
up to 40°C. The isoelectric point was pH 5.8. Substrate specificity was very high for formaldehyde. Besides
formaldehyde, the only aldehyde or alcohol tested that served as a substrate was pyruvaldehyde. Enzyme activity
was enhanced by several divalent cations such as Mn2+ (179%), Ba2+ (132%), and Ca2+ (112%) but was completely
inhibited by Ni2+, Fe3+, Hg2+, p-chloromercuribenzoate (PCMB) and cuprizone. Inactivation of the enzyme by
sulfhydryl reagents (Hg2+ and PCMB) indicated that the sulfhydryl group of the enzyme is essential for catalytic
activity.
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Introduction
Formaldehyde is a ubiquitous compound that is a prod-
uct of biological sources (from photooxidation of atmos-
pheric hydrocarbons) (Levy 1971; Zimmerman et al.
1978) and environmental sources (emissions from indus-
trial processes) (Ando 1998). An advanced technology
for potable water pretreatment includes ozonation, dur-
ing which formaldehyde is generated as a result of the
reaction of ozone with traces of humus (Schechter and
Singer 1995). Formaldehyde acts as disinfectant at con-
centrations as low as 0.1%. Therefore, it is used for room
sterilization, viscosity stabilization and preservation of
adhesives made from starch and for preservation of
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experimental specimens. Formaldehyde is a highly toxic
compound due to nonspecific reactivity with proteins
and nucleic acids (Grafstrom et al. 1983), so it is an en-
vironmental pollutant.
To address the problem of formaldehyde pollution, we

attempted to isolate a microorganism that can degrade
formaldehyde. We isolated a fungus that can degrade
concentrations of formaldehyde as high as 2.4%. The
fungus belongs to the genus Paecilomyces (Iwahara et al.
2002). After determining the DNA sequence of the 18 S
ribosomal RNA gene of this fungus, we named it Paecilo-
myces variotii No. 5 (NBRC 109023).
Based on the nature of the electron acceptor,

formaldehyde-oxidizing enzymes are divided into two
groups, NAD(P)+-dependent and dye (cytochrome)-
linked. The NAD(P)+-dependent enzymes are further
subdivided based on the need for secondary cofactors,
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such as thiol compounds, tetrahydrofolate, methylene
tetrahydromethanopterin, or modifier proteins (Zahn
et al. 2001). The oxidation of formaldehyde in eukaryotic
cells is mainly carried out by NAD+ and glutathione-
dependent formaldehyde dehydrogenase (Achkor et al.
2003; Koivusalo et al. 1989).
NAD+ and glutathione-dependent formaldehyde dehydro-

genase, called S-hydroxymethylglutathione (S-HMGSH) de-
hydrogenase, catalyzes the following reaction:

S-HMGSHþNADþ ⇄ S-formylglutathioneþNADHþHþ

Where S-HMGSH is a nonenzymatically (Uotila and
Koivusalo 1974) or enzymatically formed adduct of gluta-
thione and formaldehyde (Goenrich et al. 2002). S-formyl-
glutathione is oxidized further via formate to carbon
dioxide. The formation of S-HMGSH from formaldehyde
and glutathione is a central reaction in the consumption of
the cytotoxic formaldehyde in some methylotrophic bac-
teria as well as in many other organisms.
Though many studies have reported on purification

and characterization of S-HMGSH dehydrogenase pro-
duced by microorganisms, most were on enzymes from
bacteria and yeasts (Demkiv et al. 2007; Fernandez et al.
1995; Gutheil et al. 1992; Patel et al. 1983; Ras et al.
1995; Schutte et al. 1976). There have been no reports
on purified S-HMGSH dehydrogenase from fungi.
To investigate the mechanism of degradation of high

concentrations of formaldehyde by P. variotii NBRC
109023, we attempted to purify S-HMGSH dehydrogen-
ase, a key enzyme of detoxification in eukaryotic organ-
isms, and succeeded in obtaining an electrophoretically
homogenous preparation of the enzyme. Alcohol oxidase
could also oxidize formaldehyde (Sahm 1975), and alco-
hol oxidase from P. variotii was purified (Kondo et al.
2008). However, this enzyme is not S-HMGSH dehydro-
genase. To our knowledge, this article is the first report
on purification of S-HMGSH dehydrogenase from a fun-
gus. Herein, we describe the purification and properties
of S-HMGSH dehydrogenase from P. variotii NBRC
109023.
Table 1 Composition of media

Media Components of media (%a)

Glucose Yeast extract Mal

Basal medium 0.5 0.3

Medium for stock culture 0.5 0.3

Medium for seed culture 0.5 0.3

Medium for enzyme production 0.5 0.3

pH of media was adjusted at 7.0.
a Percentage exhibits weight per volume.
b Carboxymethyl cellulose sodium salt.
Materials and methods
Chemicals
Malt extract was purchased from Oriental Yeast Co.,
Ltd. (Tokyo, Japan). Formaldehyde solution (37% (w/v),
special grade), yeast extract D-3, polypeptone, carboxy-
methyl cellulose sodium salt, glutathione, NAD+ and all
other chemicals were purchased from Wako Pure Chem-
ical Industries, Ltd. (Osaka, Japan).

Microorganism, media and culture conditions
P. variotii NBRC 109023, which was isolated from soil
and can degrade a high concentration of formaldehyde
(2.4%) was used. Table 1 shows the composition of the
media used for its culture.
Stock cultures of P. variotii NBRC 109023

(5 mm×5 mm) were inoculated into 300 ml Erlenmeyer
flasks containing 100 ml of medium for seed culture and
cultured on a rotary shaker (220 rpm) at 25°C for 5 days.
In cultures for production of S-HMGSH dehydrogenase,
3-L shaking flasks containing 1 L of medium were inocu-
lated with 1.5% (v/v) seed culture and cultured on a re-
ciprocal shaker (120 strokes/min) at 25°C for 1 week.

Preparation of crude enzyme
Shaking flasks containing medium for production of S-
HMGSH dehydrogenase were inoculated and cultured
on a reciprocal shaker at 25°C for 1 week. After cultiva-
tion, cell pellets were harvested and washed twice with
20 mM Tris–HCl buffer (pH 8.0). After centrifugation
(21,000 × g for 20 min), the pellets were stored in the
freezer (−30°C) before use. The frozen pellets (556 g)
were suspended in 20 mM Tris–HCl buffer (pH 8.0). Sea
sand (420–840 μm, 20–35 mesh, Wako Pure Chemical
Industries, Ltd.) was added to the suspension. The pellets
were ground in a mortar and pestle in a cold room (4°C).
After cell disruption, cell debris was removed by centri-
fugation (21,000 × g for 20 min). The supernatant was
used as crude enzyme solution.

Purification of S-HMGSH dehydrogenase
The cell-free extract was salted out by a 30% saturated
ammonium sulfate solution. After storage in an ice bath
t extract Polypeptone Formaldehyde CMCb Agar

0.3 1.0

0.3 1.0 0.5 1.5

0.3 1.0 0.3 2.0

0.3 1.0 1.0
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for 2 h, the resulting precipitate was removed by centri-
fugation (21,000 × g for 20 min), and the concentration
of ammonium sulfate in the supernatant was brought to
80% saturation, the mixture being kept at 4°C for 2 h.
The resulting precipitate was collected by centrifugation
and dissolved in a small amount of 20 mM Tris–HCl
buffer (pH 8.0). The enzyme solution was dialyzed
against the same buffer at 4°C overnight. The dialyzed
enzyme solution was applied to a column (3 cm i.d. ×
25 cm length) of DEAE-Sepharose (Pharmacia, Uppsala,
Sweden) equilibrated with the above buffer. After the
column was washed with the same buffer, the adsorbed
enzyme was eluted with an increasing linear gradient of
NaCl from 0 to 0.2 M in the buffer. Active fractions were
collected and applied to a column of hydroxyapatite
(3.0 cm i.d. × 15 cm length) equilibrated with 20 mM
Tris–HCl buffer (pH 8.0). The column was washed with
the same buffer, and adsorbed enzyme was eluted using
a linear gradient from 0 to 0.1 M phosphate buffer (pH
8.0). Active fractions were collected and dialyzed against
5 mM Tris–HCl buffer (pH 8.0). After dialysis, the en-
zyme solution was lyophilized. The lyophilized protein
was dissolved with a small amount of solution containing
0.5 ml of 40% ampholyte (pH 3–10; Pharmacia) and
74.5 ml deionized water. Isoelectrofocusing was carried
out by the method of Matsuo and Horio (1967) in a
110 ml electrophoresis column at 4°C for 3 days at 1 W.

Measurement of enzyme activity
The activity of S-HMGSH dehydrogenase was assayed
according to the method of Kato (1990) with a slight modifi-
cation (see below). The activity was assayed at 35°C by the
time and reductant-dependent formation of NADH from
NAD+. The composition of the reaction mixture was as fol-
lows: 1.0 ml 50 mM Tris–HCl buffer (pH 8.0), 0.25 ml
120 mM glutathione, 0.25 ml 60 mM NAD+, 0.25 ml
60 mM formaldehyde (5.4 mM final concentration) and
1.0 ml deionized water. The reaction mixture was preincu-
bated at 35°C for 5 min and the reaction was carried out by
addition of 20 μl of the enzyme solution for 10 min (stand-
ard assay conditions). A blank test was performed with the
same reaction mixture with formaldehyde omitted.
The increase in absorbance at 340 nm was followed

against a blank using a Beckman DU-530 spectropho-
tometer (Beckman Coulter Inc., Brea, CA, USA) with a
temperature-control module. The absorbance at 340 nm
was recorded. One unit of enzyme activity was defined
as the amount of enzyme catalyzing the formation of
1 μmol NADH per minute at 35°C.
In determining the optimum pH and pH range over

which the enzyme was stable, the following buffer solu-
tions were used: 50 mM citrate-NaOH buffer (pH 3–6),
50 mM phosphate buffer (pH 6–8), and 50 mM borate-
NaOH buffer (pH 8–10). In determining enzyme stability
at different pH values, the enzyme solution was kept at
25°C for 20 h and residual activity was measured under
standard assay conditions. To determine stability at dif-
ferent temperatures, the enzyme solution was treated for
30 min and residual activity was measured under stand-
ard assay conditions.
In assessing the effects of metal ions and chemical

compounds on the enzyme, the enzyme in 50 mM
Tris–HCl buffer (pH 8.0) was treated with 1 mM of each
compound (except EDTA; 10 mM) for 1 h at 30°C and
residual activity was measured.
Gel filtration
The molecular mass of the native enzyme was estimated
by gel filtration on a TSK-gel G2000SW column
(7.5 mm×60 cm, Tosoh Corporation, Tokyo, Japan)
equilibrated with 10 mM potassium phosphate buffer
(pH 7.0) containing 0.1 M NaCl. The molecular mass
was calibrated by comparing the retention time to a gel
filtration standard (Serva Electrophoresis GmbH, Heidel-
berg, Germany) containing bovine serum albumin
(67 kDa), ovalbumin (45 kDa), chymotrypsinogen A from
bovine pancreas (25 kDa) and ribonuclease A from bo-
vine pancreas (13.7 kDa).

Gel electrophoresis
Sodium dodecyl-polyacrylamide gel electrophoresis (SDS-
PAGE) was done in a 12.5% polyacrylamide slab gel by the
method of Laemmli (1970). The molecular mass markers
for SDS-PAGE were rabbit muscle phosphorylase b
(97.0 kDa), bovine serum albumin (66.0 kDa), egg white
ovalbumin (45.0 kDa), bovine carbonic anhydrase
(30.0 kDa), and trypsin inhibitor (20.1 kDa) purchased
from Amersham Biosciences (Uppsala, Sweden). The pro-
teins were stained with Bio-Safe Coomassie Stain (Bio-Rad
Laboratories, Inc., Hercules, CA, USA).
Protein determination
Protein in samples was determined based on their ab-
sorbance at 280 nm and calculated using bovine serum
albumin as the standard.
Results
Purification of S-HMGSH dehydrogenase
S-HMGSH dehydrogenase was purified from a cell-free
extract of P. variotii NBRC 109023 by ammonium sulfate
precipitation, DEAE-Sepharose chromatography, hy-
droxyapatite chromatography and isoelectrofocusing.
Approximately 122-fold purification was achieved, with



Figure 1 SDS-PAGE of purified S-HMGSH dehydrogenase from
P. variotii NBRC 109023. Lane 1, purified enzyme. Lane 2, molecular
mass markers. The protein band was stained with Coomassie Brilliant
Blue.
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an overall yield of 10.5% from the cell-free extract. The
details of the purification are summarized in Table 2.

Criteria for determining purity and molecular weight
The purity of the purified enzyme preparation was
checked by SDS-PAGE. Figure 1 shows the electrophor-
etic pattern of a sample stained with Coomassie Brilliant
Blue R 250; the purified enzyme gave a single band after
electrophoresis. The molecular weight of the purified en-
zyme was estimated to be appropriately 49 kDa based on
comparison with the mobility of marker proteins by
SDS-PAGE. The molecular weight was also estimated to
be 49 kDa as judged by gel filtration on TSK-gel
G2000SW (data not shown), suggesting that it is a
monomer. The isoelectric point of this enzyme was 5.8.
We attempted to determine the N-terminal amino acid

of the purified enzyme using an Applied Biosystems 476
protein sequencer, but the N-terminus of this enzyme
was blocked. Therefore, we used a protein N-terminal
deblocking kit and pyroglutamate aminopeptidase
(Takara Shuzo Co., Ltd., Kyoto Japan) to remove the for-
myl, pyroglutamyl, or acetyl group of the N-terminal
amino acid, but unfortunately we could still not detect
the N-terminal amino acid of S-HMGSH dehydrogenase
from P. variotii NBRC 109023.

Effects of pH and temperature on the activity and stability
of the S-HMGSH dehydrogenase
The purified enzyme showed maximum activity at 40°C
and was stable up to 40°C (Figure 2). At temperatures
above 40°C, the enzyme activity declined sharply. The
enzyme showed maximum activity at pH 8.0, and in the
alkaline region, activity declined rapidly. In the narrow
range of pH 7.0–10, the activity was stable (Figure 3).

Substrate specificity of S-HMGSH dehydrogenase
The substrate specificity of S-HMGSH dehydrogenase
was examined. Various substrates were added to the re-
action mixture (5.4 mM final concentration) as men-
tioned in the Materials and methods. As shown in
Table 3, S-HMGSH dehydrogenase from P. variotii
NBRC 109023 has very high substrate specificity for
Table 2 Summary of purification of S-HMGSH dehydrogenase

Total protein Total activity
(mg) (Units)

Cell-free extract 10,820 23,312

Ammonium sulfate 1,539 11,080

DEAE-Sepharose 113 7,912

Hydroxyapatite 13.1 5,079

Lyophilization 10.0 2,503

Isoelectrofocusing 9.1 2,452
formaldehyde. Besides formaldehyde, the only aldehyde
or alcohol tested that served as a substrate was pyruval-
dehyde (showing 26% the activity of formaldehyde).

Effects of various compounds on activity of S-HMGSH
dehydrogenase
The effects of various compounds on enzyme activity
were examined. As shown in Table 4, the enzyme activity
was enhanced by several divalent cations such as Mn2+

(179%), Ba2+ (132%) and Ca2+ (112%). On the other
hand, Ni+2, Fe+3, Hg+2, p-chloromercuribenzoate
(PCMB) and cuprizone completely inhibited the activity.
Inactivation of the enzyme by sulfhydryl reagents (Hg2+

and PCMB) indicated that the sulfhydryl group of this
enzyme is essential for its catalytic activity.

Discussion
We isolated a fungus that can degrade a concentration of
formaldehyde as high as 2.4%. Based on the DNA se-
quence of 18S the ribosomal RNA gene of this fungus,
we named it P. variotii NBRC 109023. To investigate the
mechanism of degradation of high concentrations of for-
maldehyde by P. variotii NBRC 109023, we attempted to
from P. variotii NBRC 109023

Specific activity Yield Purification
(U/mg) (%) (fold)

2.2 100 1

7.2 47.5 3.3

70 33.9 32

388 21.8 176

250 10.7 114

269 10.5 122
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Figure 2 Effects of temperature on activity and stability of
purified S-HMGSH dehydrogenase. The reaction was carried out
under standard assay conditions described in the Materials and
methods section, except for varying the temperature (open
symbols). In experiments on stability, the enzyme was treated at
various temperatures for 30 min in 50 mM phosphate buffer (pH 8.0)
and the activity remaining was measured under standard assay
conditions (closed symbols).

0

20

40

60

80

100

120

2

R
el

at
iv

e 
ac

tiv
ity

 (%
)

pH
4 6 8 10 12

Figure 3 Effects of pH on activity and stability of purified
S-HMGSH dehydrogenase. The following buffer solutions were
used: 50 mM citrate-NaOH buffer (squares, pH 3–6), 50 mM
phosphate buffer (triangles, pH 6–8) and 50 mM borate-NaOH buffer
(circles, pH 8–10). The reaction was carried out at 35°C for 10 min at
various pH values (open symbols). In pH stability experiments, the
enzyme was treated at 25°C for 20 h at various pH values, and the
activity remaining was measured under standard assay conditions
(closed symbols).

Table 3 Substrate specificity of S-HMGSH dehydrogenase

Substrate Relative activity (%)

Formaldehyde 100

Acetoaldehyde 0

Propylaldehyde 0

Butyraldehyde 0

Isobutylaldehyde 0

Oxalaldehyde 1>

Pyruvaldehyde 26

Methyl alcohol 0

Ethyl alcohol 0

Propyl alcohol 0

The reaction was carried out at pH 8.0 for 10 min.
Each substrate was 5.4 mM in a final concentration.
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purify S-HMGSH dehydrogenase, a key enzyme of de-
toxification in eukaryotic organisms. S-HMGSH de-
hydrogenase was purified from a cell-free extract of P.
variotii NBRC 109023 by ammonium sulfate precipita-
tion, DEAE-Sepharose chromatography, hydroxyapatite
chromatography and isoelectrofocusing. The purity of
the purified enzyme preparation was checked by SDS-
PAGE. The purified enzyme gave a single band after
Table 4 Effects of various compounds on S-HMGSH
dehydrogenase activity

Compound Concentration Remaining
(mM) activity (%)

None 100

NiCl2 1 0

MnCl2 1 179

CoSO4 1 40

FeCl2 1 95

FeCl3 1 0

BaCl2 1 132

CaCl2 1 112

HgCl2 1 0

MgCl2 1 49

NaCl 1 84

EDTA 10 92

PCMB 1 0

Ellman reagent 1 68

PMSF 1 11

Cuprizone 1 0

Hydroxyl amine 1 60

Semicarbazide 1 67

Dithiothreitol 1 92

The enzyme in Tris–HCl buffer (pH 8.0) was treated by various compounds at
30°C for 1 hr and the reaction was carried out at pH 8.0 for 10 min.



Table 5 Comparison of the molecular weight of S-HMGSH
dehydrogenase from P. variotii NBRC 109023 to those of
other organisms

Organism Molecular
weight (kDa)

reference

SDS-PAGE Native

Paracoccus denitrificans 40 150 Ras et al. 1995

Escherichia coli n.r. 83 Gutheil et al. 1992

dimer

Candida boidini 40 80 Schutte et al. 1976

Hansenula polymorpha 40 dimer

(presumed) Demkiv et al. 2007

Pichia sp. 41 84 Patel et al. 1983

Rat liver 41 41 Tsuboi et al. 1992

P. variotii NBRC 109023 49 49 This study

n.r. means not reported.
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electrophoresis. The molecular weight of the purified
enzyme was estimated to be approximately 49 kDa by SDS-
PAGE and chromatography on TSK-gel G2000SW, suggest-
ing that it is a monomer with an isoelectric point of 5.8.
S-HMGSH dehydrogenase is a dimeric enzyme with a

40-kDa subunit and is ubiquitous in eukaryotic organ-
isms (Uotila and Koivusalo 1989). Table 5 compares S-
HMGSH dehydrogenase from P. variotii NBRC 109023
and other organisms. Almost all S-HMGSH dehydro-
genases are dimers with 40-kDa subunits, but S-HMGSH
dehydrogenase from P. variotii NBRC 109023 is a 49-
kDa monomer. We tried to get information for amino
acid sequence of this enzyme, but we were unable to de-
termine its N-terminal amino acid.
The effects of pH and temperature on the activity and

stability of the S-HMGSH dehydrogenase was investi-
gated. The purified enzyme showed maximum activity at
40°C and was stable up to 40°C. At temperatures greater
than 40°C, the enzyme activity declined sharply. The en-
zyme showed maximum activity at pH 8.0, and in the al-
kaline region the activity declined rapidly. In the narrow
range of pH 7.0–10, the activity was stable. S-HMGSH
dehydrogenase from P. variotii NBRC 109023 had an
optimum pH of 8.0; this value is the same as the optimal
pH of S-HMGSH dehydrogenase from Hansenula poly-
morpha (Demkiv et al. 2007). On the other hand, S-
HMGSH dehydrogenase from P. variotii NBRC 109023
had an optimum temperature of 40°C. This value is 10°C
lower than that of the H. polymorpha enzyme (Demkiv
et al. 2007).
The substrate specificity of S-HMGSH dehydrogenase

was examined. Various substrates were added to the re-
action mixture. As shown in Table 3, S-HMGSH de-
hydrogenase from P. variotii NBRC 109023 has very
high substrate specificity for formaldehyde; the only alde-
hyde or alcohol tested that served as a substrate other
than formaldehyde was pyruvaldehyde. These properties
are similar to those of the Candida boidinii enzyme
(Schutte et al. 1976).
The effects of various compounds on enzyme activity

were examined. Enzyme activity was enhanced by several
divalent cations such as Mn2+, Ba2+ and Ca2+. On the
other hand, Ni2+, Fe3+, Hg2+, PCMB and cuprizone com-
pletely inhibited activity. Inactivation of the enzyme by
sulfhydryl reagents (Hg2+ and PCMB) indicated that the
sulfhydryl group of the enzyme is essential for its cata-
lytic activity. These inhibition results are similar to those
of the enzyme from C. boidinii.
From the results obtained in this study, the properties

of S-HMGSH from P. variotii NBRC 109023 are similar
to those of the enzyme from C. boidinii; only the mo-
lecular weight of the enzyme and effects of metal ions on
its activity differ. No publications have described the
concentration of formaldehyde that C. boidinii can de-
grade. We cannot explain why P. variotii NBRC 109023
can degrade a high concentration of formaldehyde based
on the results obtained. Comparison of the S-HMGSH
dehydrogenase gene from P. variotii NBRC 109023 with
that of other organisms, especially C. boidinii, is of great
interest.
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