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Abstract

The enhanced global biodiesel production is also yielding increased quantities of glycerol as main coproduct. An
effective application of glycerol, for example, as low-cost substrate for microbial growth in industrial fermentation
processes to specific products will reduce the production costs for biodiesel. Our study focuses on the utilization of
glycerol as a cheap carbon source during cultivation of the thermoplastic producing bacterium Ralstonia eutropha
H16, and on the investigation of carbohydrate transport proteins involved herein. Seven open reading frames were
identified in the genome of strain H16 to encode for putative proteins of the phosphoenolpyruvate-carbohydrate
phosphotransferase system (PEP-PTS). Although the core components of PEP-PTS, enzyme I (ptsI) and histidine
phosphocarrier protein (ptsH), are available in strain H16, a complete PTS-mediated carbohydrate transport is
lacking. Growth experiments employing several PEP-PTS mutants indicate that the putative ptsMHI operon,
comprising ptsM (a fructose-specific EIIA component of PTS), ptsH, and ptsI, is responsible for limited cell growth
and reduced PHB accumulation (53%, w/w, less PHB than the wild type) of this strain in media containing glycerol
as a sole carbon source. Otherwise, the deletion of gene H16_A0384 (ptsN, nitrogen regulatory EIIA component of
PTS) seemed to largely compensate the effect of the deleted ptsMHI operon (49%, w/w, PHB). The involvement of
the PTS homologous proteins on the utilization of the non-PTS sugar alcohol glycerol and its effect on cell growth
as well as PHB and carbon metabolism of R. eutropha will be discussed.
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Introduction
Biodiesel (fatty acid methyl esters) is currently beside
ethanol the major renewable energy source for substitu-
tion of petroleum. During production of biodiesel gly-
cerol occurs as a main by-product (about 10%, w/w),
thus saturating the glycerol market. Due to the huge
surplus of glycerol that lowers its value, it is important
to enlarge the field of its application e.g. as substrate for
microbial growth and production of biodegradable poly-
mers which in turn reduces the high production costs of

polyhydroxyalkanoates (PHA) in industrial fermentation
processes.
Ralstonia eutropha H16 serves as model organism to

study the hydrogen-based chemolithoautotrophic meta-
bolism and has a great potential in industrial applica-
tions because of its ability to produce different
biodegradable thermoplastics (PHAs). R. eutropha is a
non-pathogenic, Gram-negative, H2-oxidizing b-pro-
teobacterium. The tripartite genome consists of two
chromosomes and the megaplasmid pHG1, and its
nucleotide sequence was published in 2006 and 2003,
respectively (Schwartz et al. 2003,; Pohlmann et al.
2006). Autotrophic CO2 fixation proceeds via the Cal-
vin-Benson-Bassham (CBB) cycle. Organic carbon and
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energy sources for heterotrophic growth comprise
sugar acids, fatty acids, alcohols, tricarboxylic acid
cycle (TCC) intermediates and other compounds. The
utilization of sugars is restricted to the amino sugar N-
acetylglucosamine and to fructose. The latter is taken
up by an ATP binding cassette (ABC)-type transporter
(frcACB) and is then metabolized via the Entner-Dou-
doroff (ED) pathway (Gottschalk et al. 1964). The
uptake of N-acetylglucosamine in R. eutropha is
mediated by a sugar-specific phosphoenolpyruvate:car-
bohydrate phosphotransferase system (PTSNag consist-
ing of EINag-HPrNag-EIIANag [nagF] and EIIBCNag

[nagE]) that functions independently from the two
general components of the bacterial PEP-PTS, histidine
phosphocarrier protein (HPr, ptsH) and enzyme I com-
ponent (EI, ptsI). The PEP-PTS is widespread among
bacteria and consists of the above mentioned two cyto-
plasmic energy-coupling enzymes and a range of car-
bohydrate-specific Enzymes II, which catalyze the
phosphorylation and concomitant translocation cascade
(Stülke and Hillen 1998,; Barabote and Saier 2005,;
Deutscher et al. 2006). Except for the Nag-specific
EIIABC proteins, no further functional EII-homologous
proteins (permease components) exist in R. eutropha
as usual for b-proteobacteria (Cases et al. 2007). Thus,
R. eutropha H16 harbours a functional PTSNag and an
incomplete PEP-PTS. Based on the results of previous
studies (Krauße et al. 2009,; Kaddor and Steinbüchel
2011) the genome of R. eutropha was investigated in
silico for the occurrence of PEP-PTS homologous pro-
teins. Seven gene loci were identified to encode for
proteins of the sugar transport system (Table 1). The
chromosomal context of each of these genes has
already been described, and deletion mutants lacking
combinations of genes involved in the PEP-PTS or/and
fructose-specific ABC transport were previously

generated (Kaddor and Steinbüchel 2011,). In addition
to the general sugar import, the PEP-PTS exhibits reg-
ulatory cellular functions and may serve as a linkage
between nitrogen and carbon metabolism (Reizer et al.
1992,; Kotrba et al. 2001,; Commichau et al. 2006,;
Velázquez et al. 2007,; Pflüger and de Lorenzo 2008,;
Krauße et al. 2009). Besides the carbohydrate-related
PEP-PTS, a paralogous nitrogen-related PTS (PTSNtr)
exists in many Gram-negative bacteria whose regula-
tory functions, components and interactions with the
PEP-PTS were extensively reviewed recently (Zimmer
et al. 2008,; Pflüger-Grau and Görke 2010).
Growth on glycerol is not linked to the PEP-PTS and

occurs very slowly in R. eutropha H16; it leads to strong
expression of hydrogenases and enzymes of the CBB
cycle, the key components of lithoautotrophic metabo-
lism (Friedrich et al. 1981). Furthermore, gluconeogenetic
enzymes as well as increased oxidative stress proteins
(ROS) were identified in 2-D gels during growth of
R. eutropha on glycerol (Schwartz et al. 2009,). The
three-carbon non-PTS sugar alcohol glycerol is probably
transported across the cytoplasmic membrane through
facilitated diffusion mediated by the glycerol uptake facil-
itator protein GlpF (Sweet et al. 1990,; Darbon et al.
1999,). Two proteins, a glycerol kinase and a glycerol-3-
phosphate dehydrogenase, are involved in the phosphory-
lation of intracellular glycerol to glycerol 3-phosphate
and the subsequent conversion to dihydroxyacetone
phosphate (Voegele et al. 1993,; Schweizer et al. 1997).
The latter is either introduced into gluconeogenesis or
catabolized through the ED pathway via pyruvate to
acetyl-CoA, the precursor for the TCC and for poly(3-
hydroxybutyrate), PHB, biosynthesis. In R. eutropha like
in most other bacteria, this polyester serves as storage for
carbon and energy. It is synthesized in the cytoplasm via
acetoacetyl-CoA and 3-hydroxybutyryl-CoA using

Table 1 Overview of detected and investigated genes involved in PEP-PTS and fructose-specific ABC-type transport in
R. eutropha H16

Gene CDS Protein annotation

ptsM H16_A0324* Fructose-specific EIIAMan component

ptsH H16_A0325* Histidine phosphocarrier protein HPr

ptsI H16_A0326* Enzyme I component

H16_A2203 H16_A2203* HPr-related phosphocarrier protein

H16_A0384 (ptsN) H16_A0384* Nitrogen regulatory EIIANtr component; Mannitol/fructose-specific EIIAMtl component

nagF H16_A0311* Phosphocarrier protein, N-Acetylglucosamine-specific EINag-HPrNag-EIIANag components

nagE H16_A0312* N-Acetylglucosamine-specific EIIBCNag components

nagC H16_A0313 N-Acetylglucosamine-specific outer membrane protein (porin)

frcA H16_B1498 Fructose-specific ABC-type transporter, ATPase component

frcB H16_B1500 Fructose-specific ABC-type transporter, periplasmic component

frcC H16_B1499 Fructose-specific ABC-type transporter, permease component

Data were obtained using the KEGG (Kyoto encyclopedia of genes and genomes) database at GenomeNet (Kanehisa et al. 2002). The CDS designations specify
the locus of each gene on the chromosome (term H16_A and H16_B indicate chromosome 1 and 2, respectively).

* Asterisks point to the seven PEP-PTS homologous genes.
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enzymes encoded by phaA, phaB and phaC under condi-
tions of carbon overflow and nitrogen limitation (Schle-
gel et al. 1961a,; Schindler 1964,; Haywood et al. 1988a,,
b,, 1989,). PHB is biodegradable and may replace petro-
leum-derived polyolefins that are widely used e.g. as
packaging materials or in medicine (Solaiman et al.
2006,). The cost of carbon substrate in large scale PHA
production processes can be as high as 50% of the total
operating costs (Lee 2006,). Abundant raw glycerol may
substitute traditionally used carbohydrates in industrial
microbial processes and reduce PHA production costs
(Murarka et al. 2008,; da Silva et al. 2009,). The price for
crude glycerol is decreasing continuously and amounts
currently to 180-220 € per ton (ICIS pricing 2008). Sev-
eral laboratories investigated the use of glycerol as fer-
mentation substrate for PHA production in different
bacteria, e.g. in Pseudomonas as well as Burkholderia spe-
cies (Ashby et al. 2004,, 2005,; Chee et al. 2010,; Zhu et al.
2010). Moreover, an attempt to produce PHB by R. eutro-
pha JMP134 and a R. eutropha mutant (DSM 545) using
commercial and waste glycerol as carbon source was
already performed (Mothes et al. 2007,; Cavalheiro et al.
2009). However, concerning R. eutropha strain H16 the
use of glycerol as a low-cost substrate for growth and
biosynthesis of PHB in combination with the high bio-
technological potential of this strain has largely been
ignored. The present study describes an extension of our
previous study (Kaddor and Steinbüchel 2011). Since we
observed the involvement of homologous PEP-PTS pro-
teins in the utilization of non-PTS substrates, the main
focus of this article is on the importance of PTS homolo-
gous proteins and other proteins involved in the carbohy-
drate uptake system of R. eutropha H16 on the utilization
of the slow-growth substrate glycerol, the conversion to
PHB, and its effect on carbon metabolism. Furthermore,
the use of glycerol as cheap and abundant carbon source
for growth of R. eutropha with respect to industrial appli-
cations e.g. the production of biodegradable polyesters
from renewable resources will be discussed.

Materials and methods
Bacterial strains, media and cultivation conditions
Bacterial strains used in this study are listed in Table 2.
Cells of all strains were cultivated for 20 h in mineral
salts medium (MSM) (Schlegel et al. 1961b) containing
1% (w/v) sodium gluconate and 0.1% (w/v) ammonium
chloride to promote best growth conditions. After har-
vesting and washing of the precultures, cells were resus-
pended in MSM supplemented with 0.05% (w/v) NH4Cl
and 1% (v/v) of glycerol as a sole carbon source to pro-
vide conditions permissive for PHB accumulation and
were then incubated for 350 h at 30°C. All liquid cul-
tures were incubated aerobically in baffled Erlenmeyer
flasks on an orbital shaker and were inoculated with 5%

(v/v) from a well-grown preculture. Growth of cells was
measured photometrically in a Klett-Summerson photo-
meter (Manostat) using filter no. 54 (520-580 nm). Sam-
ples were withdrawn depending on the growth phase
from each culture in the exponential (Figure 1a: 385-440
Klett units (KU), Figure 1b: 300-400 KU), the early sta-
tionary and the stationary growth phase, and were quan-
tified for their polyester contents by gas chromatography
analysis. After samples had been withdrawn in the early
stationary phase, NH4Cl was added to the cultures to a
final concentration of 0.05% (w/v) to induce PHB degra-
dation. All samples of the stationary growth phase were
withdrawn 6 h after induction with ammonium chloride.

PHB analysis
Lyophilized cell material of R. eutropha (5-10 mg) was
subjected to methanolysis in presence of 85% (v/v)
methanol and 15% (v/v) sulfuric acid for 3 h at 100°C.
The resulting methyl esters of 3-hydroxybutyrate were
characterized by gas chromatography as described pre-
viously (Brandl et al. 1988,; Timm and Steinbüchel
1990) by using an Agilent 6850 GC (Agilent Technolo-
gies, Waldbronn, Germany) equipped with a BP21 capil-
lary column (50 m by 0.22 mm; film thickness, 250 nm;
SGE, Darmstadt, Germany) and a flame ionization
detector (Agilent Technologies).

Results
Growth behavior of mutants in liquid media containing
glycerol
As the most obvious result of these experiments two
groups of mutants with different growth and accumula-
tion behavior were revealed. Figure 1 summarizes the
results of the cultivation experiments in MSM contain-
ing glycerol.
The first group A (Figure 1a) is represented by the

wild type H16 whose increase of optical density ceased
after 150 h of cultivation and exhibited a maximum
optical density of 720 KU (350 h). Mutants H16
ΔH16_A2203, H16 ΔH16_A0384, H16 ΔptsMHI
ΔH16_A0384, H16 ΔfrcACB and H16 ΔnagFEC belong-
ing to group A behaved similarily like the wild type.
The second group B, Figure 1b represented by the

PHB-negative mutant PHB-4 exhibited growth curves
with the lowest optical density when the cells entered
the early stationary growth phase after 100 h of cultiva-
tion comprising only about 50% of the optical density of
the wild type strain H16 (about 380 KU). The apparent
slowest growth of strain PHB-4 is due to its inability to
accumulate PHB in form of intracellular granules; the
latter contribute to the optical density of a culture. After
addition of NH4Cl to the PHB-4 culture and to the
other strains belonging to this group, the optical densi-
ties of these cultures increased, in case of PHB-4 up to
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550 KU and in case of H16 ΔptsM, a mutant lacking the
fructose-specific EIIAMan component, up to 660 KU.
Group B is related to the PHB-4 characteristics and
comprises mutants H16 ΔptsM, H16 ΔptsH, H16 ΔptsI,
H16 ΔptsMHI, H16 ΔptsH ΔH16_A2203, H16 ΔptsMHI
ΔfrcACB, H16 ΔptsMHI ΔnagFEC, as well as the two
transposon-induced mutants HF39 ptsMH::Tn5::mob
and HF39 ptsI::Tn5::mob.

PHB accumulation of mutants utilizing glycerol as a sole
carbon source
The intracellular accumulation of PHB found in mutants
of R. eutropha grown in MSM with glycerol as a sole
carbon source is shown in Figure 2. The left side of the
figure shows the results obtained with mutant strains
belonging to group A of Figure 1, whereas the right side
comprises the results obtained with mutant strains
belonging to group B of Figure 1.
In comparison to accumulation experiments made in

MSM plus sodium gluconate or fructose (Kaddor and
Steinbüchel 2011), the capability of some mutants to
accumulate PHB was reduced up to 24% (w/w) of cell
dry matter when cells were cultivated in MSM contain-
ing glycerol. This may be due to the limited number of
available carbon and to the competition of PHB bio-
synthesis and gluconeogenesis for C3-intermediates
required for product formation and growth (Bormann
and Roth 1999). As expected, strain H16 synthesized
large amounts of PHB (70.7%, w/w) in the early station-
ary growth phase (95 h), whereas strain PHB-4 did not
accumulate any detectable polyester at all. In contrast,

Chee et al. (2010) obtained only about 33% (w/w) PHB
in the cells during cultivation of the wild type H16 in
modified MSM with glycerol as a sole carbon source for
72 h.
Mutant strains belonging to group A stored PHB in

the range of 49-71.3% (w/w) at the maximum, whereas
in strains belonging to group B PHB contents of 20.1%
(w/w) were not exceeded. In this group, the lowest PHB
contents were obtained for the Tn5-induced mutant
HF39 ptsI::Tn5::mob which seemed not to enhance PHB
biosynthesis in the early stationary phase (7.8%, w/w).
Moreover, the strain did not degrade any PHB after
induction with ammonium chloride although the optical
density increased after this time (Figure 1b). Mutant
HF39 ptsMH::Tn5::mob behaved similarly to this mutant
which implies that the inserted Tn5 affected synthesis as
well as mobilization of PHB. This observation was not
made when sodium gluconate, fructose or N-acetylglu-
cosamine were used as carbon source (Kaddor and
Steinbüchel 2011).

Discussion
When comparing group A with group B, it is noticeable
that the deletion of ptsM, ptsH, or ptsI exerted a signifi-
cant change of the PHB synthesis phenotype. Besides
the Tn5-induced mutants, the remaining mutants of
group B harbored in addition the deletion of either
ptsM, ptsH, ptsI or all three genes. Another mutant,
H16 ΔptsHI behaved similar like mutant H16 ΔptsMHI
(data not shown). The impact of the putative ptsMHI
operon was observed during growth in presence of both,

Table 2 Bacterial strains and mutants used in this study

Strain Description Reference or source

Ralstonia eutropha

H16 Wild type DSM 428

HF39 Smr strain of the wild type H16 Srivastava et al. 1982

PHB-4 PHB-negative mutant of the wild type H16 DSM 541

ΔptsM ptsM precise deletion gene replacement mutant of strain H16 Kaddor and Steinbüchel 2011

ΔptsH ptsH precise deletion gene replacement mutant of strain H16 Kaddor and Steinbüchel 2011

ΔptsI ptsI precise deletion gene replacement mutant of strain H16 Kaddor and Steinbüchel 2011

ΔptsHI ptsHI precise deletion gene replacement mutant of strain H16 Kaddor and Steinbüchel 2011

ΔptsMHI ptsMHI precise deletion gene replacement mutant of strain H16 Kaddor and Steinbüchel 2011

ΔH16_A2203 H16_A2203 precise deletion gene replacement mutant of strain H16 Kaddor and Steinbüchel 2011

ΔptsH ΔH16_A2203 ptsH, H16_A2203 precise deletion gene replacement mutant of strain H16 Kaddor and Steinbüchel 2011

ΔfrcACB frcACB precise deletion gene replacement mutant of strain H16 Kaddor and Steinbüchel 2011

ΔptsMHI ΔfrcACB ptsMHI, frcACB precise deletion gene replacement mutant of strain H16 Kaddor and Steinbüchel 2011

ΔnagFEC nagFEC precise deletion gene replacement mutant of strain H16 Kaddor and Steinbüchel 2011

ΔptsMHI ΔnagFEC ptsMHI, nagFEC precise deletion gene replacement mutant of strain H16 Kaddor and Steinbüchel 2011

ΔH16_A0384 H16_A0384 precise deletion gene replacement mutant of strain H16 Kaddor and Steinbüchel 2011

ΔptsMHI ΔH16_A0384 ptsMHI, H16_A0384 precise deletion gene replacement mutant of strain H16 Kaddor and Steinbüchel 2011

ptsI::Tn5::mob strain HF39 with Tn5-inertion in ptsI, Smr Kmr Pries et al. 1991,; Schubert et al. 1988

ptsMH::Tn5::mob strain HF39 with Tn5-insertion in ptsM-ptsH, Smr Kmr Kaddor and Steinbüchel 2011
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the PTS carbohydrate N-acetylglucosamine and the non-
PTS carbon sources sodium gluconate, fructose, and gly-
cerol. Particularly, during growth on glycerol in compar-
ison to growth on the previously analyzed carbon
sources (Kaddor and Steinbüchel 2011), mutants defec-
tive in the putative ptsMHI operon accumulated less
PHB than the wild type. Pries et al. (1991) made similar

observations with Tn5-induced ptsH/ptsI mutants exhi-
biting a PHB-leaky phenotype with a lower PHB content
of the cells when grown on gluconate. However, a faster
mobilization of PHB after exhausting the extracellular
carbon source, as it occurred in presence of gluconate,
was not noticed when cultivated in media containing
glycerol. Despite the still unknown functions of ptsH

Figure 1 Growth behavior of R. eutropha H16 and various mutants. Group A comprises the wild type H16, H16 ΔH16_A2203, H16
ΔH16_A0384, H16 ΔptsMHI ΔH16_A0384, H16 ΔfrcACB, and H16 ΔnagFEC (Figure 1a). Group B is represented by mutant strains PHB-4, H16
ΔptsMHI, H16 ΔptsM, H16 ΔptsH, H16 ΔptsI, H16 ΔptsH ΔH16_A2203, H16 ΔptsMHI ΔfrcACB, H16 ΔptsMHI ΔnagFEC, HF39 ptsMH::Tn5::mob, and HF39
ptsI::Tn5::mob (Figure 1b). All strains were cultivated under conditions permissive for PHB storage in MSM containing 1.0% (v/v) glycerol as a sole
carbon source. Samples were withdrawn in the exponential, early stationary and stationary growth phase to analyze the PHB contents of the
cells. After withdrawal of the sample in the early stationary phase, NH4Cl was added to the cultures to a final concentration of 0.05% (w/v,
arrows). Experiments were done in duplicate.
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and ptsI, an exclusively regulatory role in PHB and car-
bon metabolism was already proposed (Pries et al. 1991,;
Kaddor and Steinbüchel 2011).
Additionally, our study gives evidence for the involve-

ment of ptsM (fructose-specific EIIAMan) in this regula-
tory mechanism, indicating a functional ptsMHI operon
which is supported by the corresponding gene organiza-
tion. It has already been proven that PtsM is not
involved in fructose uptake and transport (Kaddor and
Steinbüchel 2011), and therefore, the relation to EIIAMan

remained undetermined. Mutant H16 ΔH16_A0384
lacking the nitrogen regulatory EIIANtr component did
not show PHB overproduction in MSM plus glycerol
(63.6%, w/w, PHB) as it was observed during growth in
MSM plus gluconate (87.6%, w/w, PHB). As it is obvious
from the quadruple mutant H16 ΔptsMHI ΔH16_A0384
(49%, w/w, PHB), the high decrease of PHB production
in the triple mutant H16 ΔptsMHI (17.5%, w/w, PHB)
seemed to be compensated by the additional deletion of
H16_A0384 that has also been observed during cultiva-
tion experiments with the non-PTS sugars sodium glu-
conate or fructose as carbon source (Kaddor and
Steinbüchel 2011). In disruption mutants of Azotobacter
vinelandii UW136, RN7 (ptsN::Kmr ptsP::Tcr) and RN8
(ptsN::Kmr ptsO::Spr), the negative effect of the single
ptsP or ptsO mutation on PHB accumulation was sup-
pressed in the double mutants as well (Noguez et al.
2008). The same result was obtained for a Pseudomonas

putida MAD2 double mutant (ptsN::xylE ptsO::Kmr)
(Velázquez et al. 2007). Unlike the mutation of
ΔH16_A0384, the deletion of H16_A2203 (HPr-related
phosphocarrier protein), frcACB (fructose-specific ABC-
type transporter) or nagFEC (PTSNag) could not enhance
the growth and limited PHB accumulation of the
derived multiple mutants H16 ΔptsH ΔH16_A2203, H16
ΔptsMHI ΔfrcACB and H16 ΔptsMHI ΔnagFEC.
The limited carbohydrate utilization range of R. eutro-

pha coupled with the high costs of these carbon sources
in biopolymer production restricts its application in bio-
technological processes. Renewable substitutes for the so
far used expensive substrates must be investigated to
lower the commercial PHA production costs (e.g. of the
thermoplastic Biopol) to make them competitive with
the petrochemical-based plastic manufacture. Based on
the experimental results, it appears that polymer accu-
mulation in strain H16 is reduced to a minor extend
when cells were grown on glycerol (70.7%, w/w, PHB
after 260 h of cultivation) in comparison to accumula-
tion experiments made on sodium gluconate or fructose
(up to 78%, w/w, PHB after 28 h of cultivation, Kaddor
and Steinbüchel 2011,). We demonstrated that strain
H16 has the potential to utilize glycerol for indeed sub-
optimal growth but with an unrestricted capability of
valuable PHB production. Although glycerol transport
and utilization is independent of the PEP-PTS in strain
H16, deletion of the PTS homologous genes affected

Figure 2 PHB accumulation by R. eutropha H16 and various mutants. Samples were withdrawn in the exponential (light gray bars), early
stationary (gray bars) and stationary (dark gray bars) growth phases of cultivation and were analyzed by gas chromatography. Data are mean
values of two independent experiments ± standard deviations.
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anyhow carbon and PHB metabolism in this strain indi-
cating a complex regulatory function of the PTS. How-
ever, the slow growth of the wild type on this cheap and
abundant sugar substitute prevents it currently from its
use in industrial large-scale productions. Heterotrophic
growth on glycerol is related to carbon and energy limit-
ing conditions. Besides oxidative stress proteins and
hydrogenases, enzymes of gluconeogenesis and the CBB
pathway as well as PhaA and PhaB belong to the most
abundant proteins of glycerol-grown cells (Friedrich et
al. 1981,; Schwartz et al. 2009).
This study focussed on the involvement of PTS homo-

logous proteins on the utilization of glycerol with
respect to polymer biosynthesis in R. eutropha H16.
Four PTS homologous proteins (PtsM, PtsH, PtsI, PtsN)
showed a significant influence during glycerol utilization
on both, cell growth and PHB accumulation. Deletion of
the fructose-specific transport proteins resulted in no
significant difference to the wild type concerning growth
and storage behavior. Due to the occurrence of PEP-
PTS homologous proteins and the absence of a PTS-
mediated carbohydrate uptake in this strain except for
the PTSNag, further investigations are required to unra-
vel their functions in this PHB producing strain. Besides
the generation of deletion mutants and their phenotypi-
cal characterization, intensive studies on the putative
operon ptsMHI are now necessary to characterize the
respective genes in more detail and to resolve their roles
in the metabolism of R. eutropha. Certainly, this study
provides a further degree of regulation between the gen-
eral PTS proteins and both, PHB and carbon metabo-
lism in R. eutropha H16.
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