# Table 3 C/N ratios and their effects on biomass, lipid production, yield and productivity of newly isolated oleaginous yeast strains

Treatment Glucose
(g/l)
Peptone
(g/l)
Yeast extract
(g/l)
Biomass
(g/l)
Lipid
(g/l)
Yield
(g/g)
Productivity
(g/l–h)
Rhodosporidium TJUWZ4
20Ca 12.05 0.5 1.5 8.22 ± 0.64 1.60 ± 0.41 0.19 0.027
20Nb 48 2 6 11.83 ± 0.22 2.86 ± 0.22 0.24 0.048
80 48 0.5 1.5 12.4 ± 0.78 5.40 ± 1.42 0.44 0.090
120Ca 72.3 0.50 1.5 11.54 ± 0.54 3.52 ± 0.56 0.31 0.059
120Nb 48 0.33 0.99 13.32 ± 1.19 3.86 ± 0.05 0.29 0.064
Cryptococcus TJUWZA11
20Ca 14 2 0 8.92 ± 0.73 0.91 ± 0.25 0.10 0.015
20Nb 56 8 0 8.2 ± 0.43 0.75 ± 0.02 0.09 0.013
80 56 2 0 9.64 ± 0.41 1.19 ± 0.11 0.12 0.020
120Ca 84 2 0 9.38 ± 0.81 1.02 ± 0.18 0.11 0.017
120Nb 56 1.33 0 10.16 ± 0.78 1.54 ± 0.43 0.15 0.026
1. C/N calculation formula: $${{{\text{C}}/{\text{N}} = \left[ {\text{Glu}} \right] \times 0. 4 { }\left( {{\text{g}} - {\text{C}}/{\text{g}} - {\text{Glu}}} \right)} \mathord{\left/ {\vphantom {{{\text{C}}/{\text{N}} = \left[ {\text{Glu}} \right] \times 0. 4 { }\left( {{\text{g}} - {\text{C}}/{\text{g}} - {\text{Glu}}} \right)} {\left\{ {\left( {\left[ {\text{Pep}} \right]{\text{ x }}0. 1 4 { }\left( {{\text{g}} - {\text{N}}/{\text{g}} - {\text{Pep}}} \right)} \right) + \left( {\left[ {\text{YE}} \right]{\text{ x }}0. 1 1 4 { }\left( {{\text{g wt}}.{\text{ N in YE}}} \right)} \right)} \right\}}}} \right. \kern-0pt} {\left\{ {\left( {\left[ {\text{Pep}} \right]{\text{ x }}0. 1 4 { }\left( {{\text{g}} - {\text{N}}/{\text{g}} - {\text{Pep}}} \right)} \right) + \left( {\left[ {\text{YE}} \right]{\text{ x }}0. 1 1 4 { }\left( {{\text{g wt}}.{\text{ N in YE}}} \right)} \right)} \right\}}}$$
2. aC means that altering C/N ratio by changing carbon source contents at a constant concentration of nitrogen source
3. bN means that altering C/N ratio by changing nitrogen source contents at a constant concentration of carbon source