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Abstract 

Baeyer–Villiger monooxygenases are recognized by their ability and high selectivity as oxidative biocatalysts for the 
generation of esters or lactones using ketones as starting materials. These enzymes represent valuable tools for bioox-
idative syntheses since they can catalyze reactions that otherwise involve strong oxidative reagents. In this work, we 
present a novel enzyme, the Type I Baeyer–Villiger monooxygenase from Leptospira biflexa. This protein is phylogeneti-
cally distant from other well-characterized BVMOs. In order to study this new enzyme, we cloned its gene, expressed 
it in Escherichia coli and characterized the substrate scope of the Baeyer–Villiger monooxygenase from L. biflexa as a 
whole-cell biocatalyst. For this purpose, we performed the screening of a collection of ketones with variable struc-
tures and sizes, namely acyclic ketones, aromatic ketones, cyclic ketones, and fused ketones. As a result, we observed 
that this biocatalyst readily oxidized linear- and branched- medium-chain ketones, alkyl levulinates and linear ketones 
with aromatic substituents with excellent regioselectivity. In addition, this enzyme catalyzed the oxidation of 2-substi-
tuted cycloketone derivatives but showed an unusual selection against substituents in positions 3 or 4 of the ring.
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Introduction
Baeyer–Villiger monooxygenases (BVMOs) comprise a 
rapidly growing group of enzymes recognized by their 
ability as oxidative biocatalysts. They are known to 
catalyze the oxidation of ketones to esters or lactones 
mainly, although other oxidation reactions have also been 
described for these enzymes such as epoxidations on car-
bon–carbon double bonds, sulfoxidations, and oxidations 
of boron and selenium compounds. The BVMOs are 
classified as Type I, Type II and atypical BVMOs. Type 
I BVMOs contain non-covalently bound flavin adenine 
dinucleotide (FAD) as coenzyme and strictly depend on 
reduced nicotinamide adenine dinucleotide phosphate 
(NADPH) as source of reducing power. They are the best 
studied BVMOs and the ones proven in scale-up bio-
transformation assays, as reviewed in (Balke et al. 2012; 

Bučko et  al. 2016; Ceccoli et  al. 2014; de Gonzalo et  al. 
2010; Leisch et al. 2011). Discovery and analysis of new 
BVMOs have been favored by intensive cloning strate-
gies and high throughput methods that facilitated the 
expansion of the number of recombinantly available 
Type I BVMOs in the last decade (Torres Pazmiño et al. 
2010). Several examples exist regarding the practical use 
of BVMOs as whole-cell biocatalysts in organic synthe-
sis. Mihovilovic et  al. (2006) reported the formal total 
synthesis of showdomycin, trans-kumausyne and goni-
ofufurone analogs by chemoenzymatic approaches that 
included a key BVMO-mediated ketone oxidation to an 
intermediate chiral lactone. Few years later and by using 
a similar approach, Bianchi et al. (2013) reported the syn-
thesis of (+) and (−) non-natural carba-C-nucleosides by 
accessing antipodal intermediate lactones in very good 
yields and high enantiomeric excess (ee). Recently, fur-
ther applications of these antipodal lactones obtained 
by biooxidation mediated by two different BVMOs were 
reported (Rudroff et  al. 2016). Moreover, BVMOs are 
also capable for combination within chemo-enzymatic 
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transformations employing heterogeneous cataly-
sis (Fink et  al. 2013) as well as construction of artificial 
metabolic mini-pathways in vivo (Oberleitner et al. 2013) 
and in  vitro (Oberleitner et  al. 2014). Recently, demon-
strations of prospective technological applications were 
presented: (1) BVMOs were utilized for the produc-
tion of hydroxypropionic acid derivatives for bio-based 
bulk-chemical supply (Fink and Mihovilovic 2015), (2) 
an enzyme cascade allowed the synthesis of oligo-ε-
caprolactone at more than 20  g/L when starting from 
200 mM cyclohexanol by the sequential action of an alco-
hol dehydrogenase, a BVMO, and a subsequent direct 
ring-opening oligomerization of the ε-caprolactone 
formed using lipase A from Candida antarctica (Schmidt 
et al. 2015) and, (3) an in vivo biocatalytic cascade dem-
onstrated the valorization of orange peel waste as start-
ing material towards chiral carvolactone by a direct 
multi-step conversion that involved an oxygenation reac-
tion catalyzed by a BVMO (Oberleitner et al. 2017).

Leptospira biflexa is a free-living bacterium of the 
genus Leptospira, order Spirochaetales, present in aquatic 
and soil environments. The genome of this saprophytic 
species had been sequenced in 2008 (Picardeau et  al. 
2008). As part of a bioinformatic survey for BVMOs 
sequences we decided to investigate the presence of 
genes coding for putative Type I BVMOs in the genome 
of L. biflexa. In this work, we describe the cloning of the 
gene coding for the Type I BVMO from L. biflexa, its 
expression in Escherichia coli and a complete character-
ization of this new BVMO (BVMOLepto) as a whole-cell 
biocatalyst. The results are discussed and compared with 
data available in the literature for other Baeyer–Villiger 
biooxidations.

Materials and methods
Sequence alignment and phylogenetic analysis
Protein sequences of BVMOs (Additional file 1: Table S1) 
were aligned with MAFFT (Multiple Alignment using 
Fast Fourier Transform) version 7 (Katoh and Stand-
ley 2013). Phylogenetic trees were generated using the 
LG substitution model in PhyML 3.0 (Guindon et  al. 
2010). Branch support was calculated using the approxi-
mate likelihood ratio test (aLRT) with a Shimodaira-
Hasegawa-like (SH-like) procedure. Phylogenetic trees 
were visualized using FigTree v1.3.1 (Rambaut and 
Drummond 2010).

General
Chemical reagents as well as reagents for Molecular 
Biology were from commercial sources (Promega Corp., 
Madison, WI, USA; Invitrogen Corp., Carlsbad, CA, 
USA; Sigma-Aldrich Corp., St. Louis, MO, USA; Merck 
KGaA, Darmstadt, Germany; Genbiotech S.R.L., CABA, 

Argentina; BD (Becton, Dickinson and Company), Frank-
lin Lakes, NJ, USA; Cicarelli Laboratorios, San Lorenzo, 
Argentina; Bio Basic Inc., Markham, ON, Canada; MP 
Biomedicals, Santa Ana, CA, USA). Substrates used in 
this study were either commercial or synthesized in our 
laboratories. Solvents were distilled before use.

Plasmid construction, microbial strains and culture media
A DNA fragment containing the selected BVMO gene 
from L. biflexa (CP000786.1, Protein ABZ97795.1; pre-
viously YP_001839071.1) was obtained by polymerase 
chain reaction (PCR) of genomic DNA using primers 
5′-GATTCGCTAGCATGACAACATCAGGTTTTAG-3′ 
and 5′-ACTGCCTCGAGTTATTGGGTGGTGAGAC-3′ 
that contain NheI and XhoI recognition sites, respectively. 
The PCR amplification was performed with Pfu DNA 
polymerase (Promega Corp, Madison, WI, USA) accord-
ing to the manufacturer protocol and supplemented with 
5% (v/v) dimethyl sulfoxide. The amplified DNA frag-
ment corresponding to the predicted length (1489 base 
pairs) was digested and ligated into compatible sites of 
pET-TEV plasmid (Houben et  al. 2007) to produce the 
pHLb01 plasmid. All DNA purifications were carried out 
using the Wizard® SV Gel and PCR Clean-Up System 
(Promega Corp, Madison, WI, USA). The recombinant 
plasmid was isolated using Wizard® Plus SV Miniprep 
DNA Purification System (Promega Corp, Madison, WI, 
USA) and its sequence was confirmed by DNA sequenc-
ing. E. coli strains were chemically transformed with the 
plasmid by standard procedures (Sambrook et al. 1989), 
and grown at 37  °C in LB-agar medium (5  g/L yeast 
extract, 10 g/L peptone, and 5 g/L NaCl, 15 g/L agar) sup-
plemented with 50 μg/mL kanamycin.

The genomic DNA from L. biflexa serovar Patoc strain 
Patoc 1 (Paris) was kindly provided by Prof. Eduardo A. 
Ceccarelli from Instituto de Biología Molecular y Celu-
lar de Rosario, Rosario, Argentina and Prof. Mathieu 
Picardeau from Institut Pasteur, Paris, France (Picard-
eau et al. 2008). The strain L. biflexa serovar Patoc strain 
Patoc1 (Paris) (CRBIP6.1176) is maintained in the Cen-
tre de Ressources Biologiques de l’Institut Pasteur, Paris, 
France.

Protein expression
A pre-culture of E. coli BL21(DE3) cells transformed with 
pHLb01 plasmid was grown overnight in LB medium 
supplemented with 50 μg/mL kanamycin. Then, fresh LB 
medium with kanamycin was inoculated with the over-
night pre-culture [2% (v/v)] and incubated at 37 °C until 
optical density OD600 = 0.4–0.6 was reached. Next, iso-
propyl β-d-1-thiogalactopyranoside (IPTG) was added 
to induce recombinant gene expression at 0.3  mM final 
concentration and the culture was transferred to 24 °C. In 
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order to analyze flavoprotein production, the cells were 
harvested by centrifugation after overnight induction and 
resuspended in 50 mM Tris–HCl buffer, pH 8 containing 
150 mM NaCl, 0.05 mg/mL lysozyme, 0.1 mM benzami-
dine and 0.5% (v/v) triton X-100. The cell homogenate 
was centrifuged at 4 °C for 15 min at 12,000g. The pres-
ence of BVMOLepto in the soluble and insoluble fractions 
was analyzed by SDS-PAGE on 12% polyacrylamide gel.

Whole‑cell biotransformations
Biotransformations of linear- and branched-chain 
ketones as well as some aromatic and cyclic ketones were 
carried out in 10 mL cultures. Recombinant gene expres-
sion was induced at 0.3  mM IPTG and substrates were 
added as solutions prepared in ethanol (0.5 or 0.1 mg/mL 
final concentration, as required). After 24 h of reaction at 
24 °C, analytical samples were centrifuged and the super-
natant (0.7 mL) was extracted with diethyl ether (0.7 mL) 
supplemented with 0.5 mg/mL 1,3,5-trimethylbenzene as 
internal standard. The organic phase was removed, dried 
with anhydrous Na2SO4, and analyzed by gas chromatog-
raphy-mass spectrometry (GC–MS; Shimadzu GCMS-
QP2010 Plus from Shimadzu Corporation, Kyoto, Japan) 
using an achiral and/or a chiral capillary column (SPB-1 
Capillary GC Column or β-DEX 325, respectively, 
30 m × 0.25 mm ID, 0.25 μm film, from Supelco, Belle-
fonte, PA, USA). Reaction products were predicted by 
GC–MS or by comparison with reference biotransforma-
tions, when possible. Other ketones including levulinic 
esters and most of cyclic ketones were assayed using 
24-well plates following the general procedure described 
in (Rial et al. 2008a, b) with minor modifications. In this 
case, β-cyclodextrin (4.0 mM) was supplemented as a cell 
membrane transfer agent; the culture was thoroughly 
shaken and then divided into 1.0 mL aliquots. Substrates 
were added as solutions in 1,4-dioxane (4.0  mM final 
concentration), the plates were sealed with adhesive film 
and incubated at 24 °C for 24 h. After centrifugal separa-
tion of the cell mass, samples were prepared by extrac-
tion of the biotransformation culture (0.5 mL) with ethyl 
acetate (1.0 mL) containing 1.0 mM methyl benzoate as 
internal standard and analyzed by chiral-phase GC-FID 
(Thermo Scientific Trace or Focus, Thermo Fisher Sci-
entific, Waltham, MA, USA) using columns BGB175 or 
BGB173 (30 m × 0.25 mm ID, 0.25 μm film) from BGB 
Analytik AG (Boeckten Switzerland) or achiral-phase 
GC-FID (Thermo Scientific Trace or Focus) using col-
umn TR5-MS (15 m × 0.25 mM ID, 0.10 µm film) from 
Thermo Fisher Scientific, Waltham, MA, USA. All bio-
transformations were performed as triplicates; conver-
sion and selectivity are reported. Whenever possible, 
optical rotation signs of products were assigned on the 
basis of published reference biotransformations.

Results
Protein sequence analysis
We investigated the presence of BVMOs in L. biflexa 
by bioinformatic approaches and detected only one 
sequence corresponding to a putative Type I BVMO. In 
order to study this protein sequence, phylogenetic rela-
tionships were established amongst recombinantly avail-
able BVMOs both from eukaryotes and prokaryotes 
(Fig.  1; Additional file  1: Table S1). The topology of the 
un-rooted tree (Fig. 1a) showed different clades of Type 
I BVMO sequences corresponding to the previously 
defined groups I to VII (Ferroni et al. 2014; Szolkowy et al. 
2009). The BVMOLepto shares 29–33% sequence identity 
with proteins of the group IV that includes BVMOs with 
an N-terminal extension such as BVMO18 from Rhodoc-
occus jostii RHA1 (30% sequence identity) and HAPMO 
from Pseudomonas putida JD1 (33% sequence identity) 
(Additional file  1: Table S1). The sequence of the puta-
tive BVMOLepto clusters with several divergent Type I 
BVMOs with variable and/or partially characterized sub-
strate scope and shares approximately 34–44% sequence 
identity with BVMOs in this clade. Recombinant expres-
sion of several BVMOs belonging to this cluster was neg-
ligible or its activity was not detected: BVMO6, BVMO7 
and BVMO17 from R jostii (Riebel et al. 2012; Szolkowy 
et al. 2009), and BVMO1 from Mycobacterium tuberculo-
sis H37Rv (Bonsor et al. 2006) (Fig. 1a). According to our 
analysis, the BVMOLepto groups in a subclade together 
with the BVMO1 from M. tuberculosis H37Rv (Fig.  1a) 
and they share 44% sequence identity (Additional file 1: 
Table S1). Taking all this into account, the BVMOLepto is 
an interesting candidate to be functionally produced in E. 
coli and characterized as a biocatalyst in order to contrib-
ute to the knowledge of Type I BVMOs.

The two Rossmann-fold motifs for dinucleotide-bind-
ing (GxGxxG/A) and the characteristic Type I BVMO 
consensus sequences (G/AGxWxxxxF/YPG/MxxxD 
and FxGxxxHxxxWP/D) are conserved in the new 
BVMOLepto, as it is shown in a multiple sequence align-
ment of BVMOLepto and representative Type I BVMOs 
from different clades (Fig.  1b; Additional file  1: Figure 
S1): 4-hydroxyacetophenone monooxygenase (HAPMO) 
from Pseudomonas fluorescens ACB (32% sequence iden-
tity, group IV), cyclohexanone monooxygenase (CHMO) 
from Acinetobacter sp. NCIMB 9871 (30% sequence 
identity, group III), phenylacetonone monooxyge-
nase (PAMO) from Thermobifida fusca (27% sequence 
identity, group II), cyclododecanone monooxygenase 
(CDMO) from Rhodococcus ruber SC1 (28% sequence 
identity, group VII) and cyclopentanone monooxyge-
nase (CPMO) from Comamonas sp. NCIMB 9872 (27% 
sequence identity, group I). The BVMOLepto consists of 
488 amino acids and it is characterized by the lack of 52 
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residues that comprise one helical turn (positions 257–
259), one helix (positions 262–276) and a second short 
helix (positions 278–284) in the polypeptide chain of the 
CHMO from Rhodococcus sp. HI-31 (Additional file  1: 
Figure S2).

Cloning and expression of BVMOLepto in E. coli
The gene coding for BVMOLepto was amplified by PCR 
from genomic DNA and cloned into the pET-TEV vec-
tor as it is described in “Materials and methods”. Upon 
induction of gene expression, the full-length BVMOLepto 
was produced as fusion to an N-terminal His-Tag 
(expected size 54  kDa). The presence of BVMOLepto in 
protein extracts of induced E. coli cells was analyzed by 
SDS-PAGE and Coomassie Blue staining (Fig. 2). A major 
band of estimated 54 kDa that matched with the expected 
size of the recombinant BVMOLepto was detected both in 
the soluble and insoluble fractions of the induced culture. 
Approximately 60% of the protein was obtained in soluble 
form (Fig. 2, lanes 1 and 2). This band was not detected 

in E. coli BL21(DE3) cells, used as controls (Fig. 2, lanes 
3 and 4). In consequence under the experimental con-
ditions tested, recombinant gene expression yielded the 
BVMOLepto protein for biotransformations in whole-cell 
systems.

Assessment of the substrate profile of BVMOLepto as a 
whole‑cell biocatalyst
In order to evaluate the potential of BVMOLepto as a 
biocatalyst, we decided to perform whole-cell biotrans-
formation assays. This approach has the advantage of 
providing NADPH in vivo during the course of reaction. 
In this study, we aimed at detecting Baeyer–Villiger oxy-
genation of ketones (Fig.  3). Whole-cells expressing the 
BVMOLepto were challenged with a collection of ketones 
with diverse structural characteristics, namely acyclic, 
cyclic, aromatic, and fused ketones.

In order to explore the ability of this BVMO to oxidize 
linear- and branched-chain ketones, a set of aliphatic 
ketones and three alkyl levulinates were tested as sub-
strates. Linear- and branched-chain ketones (1–6) were 
oxidized with very good conversion and excellent regi-
oselectivity towards the normal ester product formed by 
the insertion of the oxygen atom on the side of the longer 
or branched alkyl chain (Table 1). However, cellular lysis 
or growth inhibition was observed when biotransforma-
tions were carried out with the 2-methyloctan-4-one 
(7) and with nonan-2-one (8) and its derivative 9 under 

(See figure on previous page.) 
Fig. 1  Sequence homology analysis of BVMOLepto. a Maximum-likelihood phylogenetic tree of recombinant BVMOs. The scale bars indicate the 
number of substitutions per site per unit of branch length. The aLRT values are shown at the nodes: >0.75 (black) and <0.75 (grey). The colors of 
branches indicate the groups I (pink), II (orange), III (blue), IV (red), V (cyan), VI (violet) and VII (gray) as previously defined (Ferroni et al. 2014; Szolkowy 
et al. 2009). Blue circles indicate recombinant BVMOs that were insoluble or their activity was not detected. BVMO from L. biflexa is indicated in bold. 
Protein sequences with their corresponding accession numbers are listed in Additional file 1: Table S1. b Multiple sequence alignment of six rep-
resentative BVMOs belonging to different clades. The partial alignment of PAMO from T. fusca (Q47PU3), CHMO from Acinetobacter sp. NCIMB 9871 
(BAA86293), HAPMO from P. fluorescens ACB (AAK54073), CPMO from Comamonas sp. NCIMB 9872 (BAC22652), CDMO from R. ruber SC1 (AAL14233) 
and BVMO from L. biflexa (ABZ97795) is shown. The two Rossmann-fold motifs (GxGxxG/A) and the two consensus sequences of Type I BVMOs (G/
AGxWxxxxF/YPG/MxxxD and FxGxxxHxxxWP/D) are written in bold

Fig. 2  SDS-PAGE of recombinant BVMOLepto. Samples correspond-
ing to the soluble (lane 1) and insoluble (lane 2) fractions of protein 
extracts of E. coli BL21(DE3)/pHLb01 and the soluble (lane 3) and 
insoluble (lane 4) fractions of BL21(DE3) protein extract were sub-
jected to 12% SDS-PAGE followed by Coomassie Blue staining. Lane 5 
molecular marker. The arrow indicates the protein band correspond-
ing to the recombinant BVMOLepto Fig. 3  General Baeyer–Villiger oxidation catalyzed by BVMOs
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standard conditions. In order to overcome this drawback, 
we decided to lower the concentration of ketones 7, 8 
and 9 to 0.1 mg/mL. Consequently, excellent conversions 
of 8 and 9 were achieved whereas moderate conversion 
of ketone 7 was detected even at low substrate concen-
tration (Table 1).

The esters shown in Table 1, entries 1-9 (i.e. tert-butyl 
acetate, propyl acetate, ethyl propionate, isobutyl acetate, 
butyl propionate, 4-methylpent-3-en-1-yl acetate, hep-
tyl acetate, pentyl butyrate) are important aroma com-
pounds, pesticides or solvents of great interest for the 
industry. Conventional procedures for the synthesis of 
these esters involve the use of chemical catalysts, organic 

solvents, high temperatures and/or refluxing conditions. 
In contrast, the biooxidation approach towards them is 
an advantageous alternative to the traditional organic 
procedures, as high conversions can be achieved by a 
simple, clean, and efficient method. To the best of our 
knowledge, this work is the first report of a Baeyer–Vil-
liger biooxidation of ketones 1, 3–7 and 9 to afford their 
valuable normal esters. Alkyl levulinates 10, 11 and 12 
were readily accepted and oxidized by the BVMOLepto 
biocatalyst with excellent conversion (>99%) and selec-
tivity, producing only substituted propionates (Table  1). 
These compounds can be easily hydrolyzed to 3-hydroxy-
propionic acid, which is considered as a value-added 
chemical precursor or building block for several bulk 
chemicals.

Whole-cells expressing BVMOLepto showed a trend for 
the oxidation of the aromatic ketones (Table  2). Aceto-
phenone (1-phenylethanone, 13) was not a substrate 
for the biocatalyst but phenylacetone (1-phenylpro-
pan-2-one, 14), 1-(p-tolyl)propan-2-one (15), 1-phe-
nylbutan-2-one (16), 4-phenylbutan-2-one (17) and 
4-(4-hydroxyphenyl)butan-2-one (18) were fully con-
verted to the normal esters (>99%). The biooxidations 
on ketones 14, 15, and 16 give access to benzyl acetate, 
4-methylbenzyl acetate or benzyl propionate, respec-
tively, which are highly used in the fragrance, cosmetic 

Table 1  Biotransformations of linear- and branched-chain 
ketones mediated by BVMOLepto

a  Relative conversion (Conv) of starting material to ester as determined by 
GC-FID or GC–MS
b  Relative conversion of substrate to ester measured using 0.1 mg/mL of 
starting material

No Substrate Product Conv (%)a

1 O O

O

65

2 O

O

O >99

3 O

O

O 82

4 O

O

O >99

5 O

O

O >99

6 O

O

O 98

7 O

O

O 88b

8 O

O

O >99b

9 O O

O

>99b

10 O

O

O
O

O

O

O >99

11 O

O

O
O

O

O

O >99

12 O

O

O
O

O

O

O >99

Table 2  Biotransformation of  aromatic ketones mediated 
by BVMOLepto

nc no conversion, nd not determined
a  Relative conversion (Conv) of starting material to ester as determined by 
GC-FID or GC–MS

No Substrate Product Conv (%)a

13 O – nc

14 O

O

O >99

15
O O

O >99

16 O O

O

>99

17 O nd >99

18 O

HO

HO

O

O

>99
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and food industries as flavor and aroma compounds 
(McGinty et al. 2012; Surburg and Panten 2006). Accord-
ing to our information, neither 4-methylbenzyl acetate 
nor benzyl propionate has been obtained by BVMO-
mediated biooxidations before.

In order to examine the ring size effect of cyclic 
ketones and the influence of different substituents on 
the biocatalytic performance of BVMOLepto, representa-
tive cyclobutanone, cyclopentanone and cyclohexanone 
derivatives were evaluated as substrates of BVMOLepto. 
The biocatalyst preferred cyclohexanone derivatives 
with the substitution in position 2 over substituents in 
position 3 or 4 of the ring (Table 3, compounds 19–25). 
Oxygen insertion and migration occurred at the more 
substituted carbon of compounds 19–22, thus giving 
access to normal lactones exclusively in very good ee 
with an enantioselectivity trend similar to that observed 
for CHMO from Acinetobacter sp. NCIMB 9871 (Stew-
art et  al. 1996, 1998). In addition, the set of cyclopen-
tanone derivatives showed an intriguing behavior as well 
(Table  3). In this series, the 2-benzylcyclopentanone 
(26) and 3-(2-oxocyclopentyl)propanenitrile (27) were 
accepted and showed very good conversions but trans-
3-methyl-2-pentylcyclopentanone (28), 3-methylcy-
clopent-2-enone (29), and 3-methylcyclopentanone 
(30) were not substrates for BVMOLepto in whole-cell 
biotransformations, in agreement with the preference 
observed for the 2-substituted cyclohexanone deriva-
tives (Table  3). Similarly, the 3-substituted cyclobu-
tanones that are oxidation-prone ketones, were poorly 
oxidized or not converted at all by BVMOLepto under the 
assayed conditions (Table 3, compounds 31–33), show-
ing that these ketones are not substrates for this BVMO.

The selectivity of the oxygenation of the fused 
cyclobutanones was analyzed by chiral phase GC. Fig-
ure 4 shows the four possible products of biooxidation 
on racemic fused cyclobutanones. The oxidation of 
the racemic cis-bicyclo[3.2.0]hept-2-en-6-one (34) by 
CHMO from Acinetobacter sp. NCIMB 9871 is a well-
known biotransformation reaction that allows access 
to approximately 1:1 ratio of normal and abnormal lac-
tones with high optical purities (Alphand and Furstoss 
1992). Like the CHMO from Acinetobacter sp. NCIMB 
9871, the BVMOLepto oxidized the fused cyclobutanone 
34, albeit with poorer ee of both normal (50%) and 
abnormal lactones (23%) (Table 4). Besides, the conver-
sion and regioselectivity of BVMOLepto on ketones 35 
and 36 were low but with an unusual trend towards the 
abnormal lactones. In both cases, abnormal lactones 
were produced in high optical purity (ee 95% and >99%, 
respectively).

Table 3  Biooxidation of  substituted cyclic ketones 
by BVMOLepto

nc no conversion, nd not determined, na not applicable
a  Relative conversion (Conv) of starting material to lactone as determined by GC
b  Enantiomeric excess of the product (eeP) was determined by chiral phase GC. 
The sign of specific rotation is indicated in brackets and was assigned according 
to the literature for reference biotransformations

No Substrate Conv (%)a eeP (%)b

19 O 55 68(−)

20 O 36 98(−)

21 O 97 nd

22 O 16 88(−)

23 O nc na

24 O nc na

25 O

HO

nc na

26 O 86 nd

27

CN

O 98 nd

28 O nc na

29 O nc na

30 O nc na

31 O O 9 21(+)

32 O

O

O 5 27(+)

33

O

O

O

O nc na
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Discussion
As part of a survey for putative Type I BVMOs sequences 
in public databases, we investigated the presence of 
BVMOs in L. biflexa by bioinformatic analysis and 
detected only one gene encoding a Type I BVMO in L. 
biflexa. In this work, we present the Type I BVMO from 
L. biflexa, its protein sequence analysis and phylogenetic 
studies. In addition, we report the cloning, heterologous 
expression in E. coli and biocatalyst assessment of this 
novel BVMO in whole-cell systems.

The phylogenetic analysis based on known Type I 
BVMOs indicates that our new BVMOLepto belongs to a 
clade that remains only partially explored for biocatalysis 
(Fig.  1a). Indeed, the BVMOLepto and the BVMO1 from 

M. tuberculosis H37Rv (Accession Number CAA97398) 
(Bonsor et al. 2006) group together in a subclade of the 
phylogenetic tree. The BVMOLepto is the first enzyme of 
this subclade to be functionally produced in E. coli and 
characterized as a Baeyer–Villiger monooxygenase since 
the gene coding for BVMO1 from M. tuberculosis cloned 
in plasmid pDB1 was expressed poorly if at all and no 
activity could be measured with ketones as substrates 
(Bonsor et  al. 2006). The BVMOLepto consists of 488 
amino acids and lacks 52 residues that comprise one heli-
cal turn and two helices in the polypeptide chain of the 
CHMO from Rhodococcus sp. HI-31 (Yachnin et al. 2014) 
as predicted by homology modeling (Additional file  1: 
Figures S1, S2). This is a feature that BVMOLepto shares 
with the others BVMOs of the same clade (Fig.  1a). In 
the crystallographic structure of the CHMO from Rho-
dococcus sp. HI-31, these helices are exposed to the 
solvent (Additional file 1: Figure S1). The typical consen-
sus sequences of Type I BVMOs are well conserved in 
BVMOLepto (Fig. 1b).

The BVMOLepto coding sequence was cloned and over-
expressed in E. coli yielding approximately 60% of solu-
ble recombinant protein (Fig.  2). In order to investigate 
its substrate scope for possible synthetic applications of 
this BVMO and to compare its performance with other 
BVMOs, we have challenged BVMOLepto with a broad 
variety of ketones of different sizes and bearing diverse 
functional substituents.

Although some model aliphatic linear ketones have 
been evaluated as substrates for BVMOs (Beneventi 

Fig. 4  Baeyer–Villiger biooxidation of racemic fused ketones 34, 35 
and 36 to normal and abnormal lactones

Table 4  Biooxidation of fused cyclobutanones mediated by BVMOLepto

N:ABN ratio of normal:abnormal lactones, nd not determined
a  Relative conversion (Conv) of starting material to lactone as determined by chiral phase GC
b  Enantiomeric excess for normal lactone (eeN) and abnormal lactone (eeABN). The sign of specific rotation is indicated in brackets and was assigned according to the 
literature for reference biotransformations

No Substrate BVMO Leptospira biflexa Reference biotransformation using CHMO Acinetobacter sp. NCIMB 
9871 as biocatalyst

Conva (%) eeN, eeABN (%)b Yield (%) eeN, eeABN (%)b References

N:ABN (%) N:ABN (%)

34 O 94 50(−), 23(−) 74 95(−), >99(−) Mihovilovic et al. (2005b)

50:50 51:49

35 O 8 44(−), 95(−) 80 60(−), >95(−) Alphand and Furstoss (1992)

27:73 65:35

36 O 47 96(nd), >99(nd) 84 44(nd), >99(nd) Mihovilovic et al. (2008)

19:81 70:30
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et al. 2013; Bisagni et al. 2014a, b; Bonsor et al. 2006; Fer-
roni et al. 2014; Fraaije et al. 2004; Kirschner et al. 2007; 
Kotani et  al. 2007; Rehdorf et  al. 2007, 2009, 2010a, b; 
Riebel et  al. 2012; Szolkowy et  al. 2009; van Beek et  al. 
2014; Völker et al. 2008), in this work, we present a sys-
tematic analysis of BVMOLepto-mediated biooxidations 
of a broad range of unsubstituted linear ketones, linear-
branched ketones and linear ketones with aromatic 
substituents. To the best of our knowledge, about half 
of the ketones shown in Tables 1 and 2 have never been 
reported as BVMO substrates before.

Amongst the tested linear and linear-branched 
ketones, this biocatalyst showed a clear preference 
towards medium-length, linear- and branched-chain 
ketones as substrates, reaching full conversions in most 
cases under standard biotransformation experiments. 
These reactions proceeded with excellent selectivity as 
judged by the insertion of the oxygen atom on the side 
of the longer or branched alkyl chain, producing the 
so-called normal regioisomeric ester in each case only 
(Table  1). Only pentan-2-one and nonan-2-one out of 
the ketones listed in Table 1, had been evaluated as sub-
strates for BVMOs in previous years (Bisagni et al. 2014b; 
Kotani et al. 2007; Rehdorf et al. 2007; Völker et al. 2008). 
So far, the biooxidation of penta-2-one have been meas-
ured following the consumption of NADPH at 340  nm 
in vitro (Kotani et al. 2007; Völker et al. 2008). Similarly 
to BVMOLepto-mediated biotransformation, the BVMO3 
from Dietzia sp. D5 (Bisagni et al. 2014b) and the BVMO 
from P. putida KT2440 (Rehdorf et  al. 2007) oxidized 
nonan-2-one to heptyl acetate. On the other hand, Bisa-
gni et al. (2014b) reported the formation of normal and 
abnormal esters of 3-keto substrates by the BVMO3 from 
Dietzia sp. D5. In BVMOLepto-mediated biooxidations of 
ketones 5, 7 and 9, the keto group at the second, third 
or fourth C-atom did not affect regioselectivity since the 
corresponding normal esters were obtained in all cases 
with excellent conversions after 24  h of biotransforma-
tion (Table  1). When we explored the biotransforma-
tion of 2-methyloctan-4-one (7), nonan-2-one (8) and its 
derivative 9 under standard conditions, we detected cel-
lular lysis or growth inhibition. A similar observation had 
been reported for the biooxidation of nonan-2-one by the 
BVMO from P. putida KT2440 under growing conditions 
but, in that case, the authors observed no cellular growth 
and no conversion of the ketone (Rehdorf et  al. 2007). 
By reducing the concentration of ketones 7, 8 and 9 in 
the biotransformation reactions, we were able to achieve 
high conversions (Table 1).

Levulinic esters are valuable precursors of the 
3-hydroxypropionic acid, a versatile compound which 
may be employed as platform chemical for the synthesis 
of 1,3-propanediol, acrylamide, acrylic acid and methyl 

acrylate, among others. The 3-hydroxypropionic acid can 
be synthesized chemically and biologically as reviewed 
in (Kumar et  al. 2013). Besides, the enzyme-mediated 
Baeyer–Villiger oxidation of levulinic esters followed by 
hydrolysis may enable a perspective for a practical and 
simple alternative to produce 3-hydroxypropionic acid. 
In this context, the biocatalytic Baeyer–Villiger oxidation 
of alkyl levulinates in water under ambient conditions 
was demonstrated recently (Fink and Mihovilovic 2015). 
In the same work, it was also shown the Baeyer–Villiger 
oxidation of ethyl levulinate on gram scale to afford ethyl 
3-acetoxypropionate (Fink and Mihovilovic 2015). In that 
study, 13 different BVMOs were evaluated on three alkyl 
levulinates. The best results were obtained with CPMO 
from Comamonas sp. NCIMB 9872 and CDMO from 
R. ruber SC1 on butyl levulinate (~90–95% conversion), 
although their activity on methyl or ethyl levulinates was 
moderate (Fink and Mihovilovic 2015). In the present 
work, we observed that the BVMOLepto, which is distantly 
related to CPMO from Comamonas sp. NCIMB 9872 
and CDMO from R. ruber SC1, was able to accept and 
oxidize levulinic esters with excellent conversion (>99%) 
and selectivity (Table 1) allowing easy access to pure pro-
pionates derivatives, thus providing a very interesting 
alternative tool for these biotransformations.

In addition, all tested linear ketones with aromatic sub-
stituents, except acetophenone (13), were excellent sub-
strates for BVMOLepto (Table  2). Acetophenone is not a 
substrate for CHMO from Acinetobacter sp. NCIMB 
9871 either, although it has been accepted by three fun-
gal BVMOs from Aspergillus flavus NRRL3357 (Ferroni 
et  al. 2014) and by HAPMO from P. fluorescens ACB 
(Kamerbeek et  al. 2003). This preference against aceto-
phenone derivatives and for phenylacetone (14) is not 
novel, since the well-known PAMO from T. fusca showed 
the same behavior (Fraaije et  al. 2005). To our knowl-
edge, this is the first work that reports the synthesis of 
4-methylbenzyl acetate or benzyl propionate by BVMO-
mediated biotransformations of ketones 15 or 16. In the 
series shown in Table  2, it is clear that BVMOLepto oxi-
dizes linear aromatic ketones with insertion of the oxy-
gen atom to the more substituted carbon. In the case of 
1-phenylbutan-2-one (16), where both α-carbon atoms 
are equally substituted, the migratory aptitude of the 
α-carbon atoms seemed to be primarily determined by 
the higher nucleophilicity of the α-carbon bonded to the 
aromatic ring due to its donating electronic effect com-
pared with the methyl group. The 4-phenylbutan-2-one 
(17) and the 4-(4-hydroxyphenyl)butan-2-one (18) have 
been evaluated as substrates on the four BVMOs from 
A. flavus NRRL3357 (Ferroni et  al. 2014). The authors 
reported that longer distances between the carbonyl 
group and the aromatic ring, and a hydroxy substitution 
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on the para position of the ring resulted in relative low 
conversions for some of the enzymes. However, these 
features did not affect the excellent conversions observed 
with BVMOLepto after 24 h, indicating that it may be the 
best biocatalyst for this kind of transformations reported 
to date.

In this work, we present biotransformation results after 
24  h of reaction. Although kinetic resolution processes 
could be possible for racemic substrates, these stud-
ies might be the matter of future research. Amongst the 
series of cyclic ketones, it is worth noting that the oxi-
dation of cyclohexanone derivatives was very selective 
towards structures with substituents in α-position to the 
carbonyl group, as evidenced by the lack of reaction on 
3,5-dimethylcyclohexanone (23), 4-methylcyclohexanone 
(24) or 4-hydroxy-4-methylcyclohexanone (25) (Table 3). 
A similar substitution preference was observed for the 
oxidation of mono- and disubstituted cyclopentanones 
(26–30) (Table 3). The BVMO4 from Dietzia sp. D5 also 
revealed a decrease in activity in the series of 2-, 3- and 
4-methylcylohexanones by spectrophotometric measure-
ments (Bisagni et al. 2014a). However, this is not a general 
behavior since oxidations of 3- or 4-substituted cyclohex-
anones are well-established reactions for the typical 
cycloketones-converting BVMOs such as CHMO from 
Acinetobacter sp. NCIMB 9871 (Mihovilovic et al. 2001; 
Stewart et  al. 1998; Taschner and Black 1988), CHMO 
from Xanthobacter sp. ZL5 (Rial et al. 2008a, b), CPMO 
from Comamonas sp. NCIMB 9872 (Iwaki et  al. 2002), 
CDMO from R. ruber SC1 (Fink et  al. 2012), CPDMO 
from Pseudomonas sp. strain HI-70 (Fink et  al. 2011; 
Iwaki et  al. 2006), and CHMO from Polaromonas sp. 
strain JS666 (Alexander et al. 2012). Therefore, the strict 
selection against substituents in position 3 and 4 of the 
ring seems to be a unique behavior of BVMOLepto since to 
the best of our knowledge, such clear selectivity has never 
been reported for another BVMO before. These intrigu-
ing results led us to consider conducting three-dimen-
sional protein studies and molecular docking simulations 
in the future in order to investigate the steric hindrance 
that prevent interaction of these substrates with the 
enzyme and shed some light on the mode of their binding 
to the active site of BVMOLepto. In line with these obser-
vations, the 3-substituted cyclobutanones tested (31–33) 
were very poor substrates or not substrates at all for 
BVMOLepto (Table 3). BVMOs that cluster together with 
BVMOLepto have never been evaluated on these ketones 
before, thus available data correspond to distant BVMOs. 
The HAPMO from P. fluorescens ACB is the phylogeneti-
cally closest BVMO that has been evaluated on ketones 
31 and 32; this enzyme showed modest yield and ee for 
the desymmetrization of 31 and 32 (Mihovilovic et  al. 
2005a). However, the CHMO-type enzymes, which 

belong to the phylogenetic group III, readily catalyze the 
desymmetrization of prochiral ketones 31–33 to the cor-
responding lactones with high ee (Alexander et al. 2012; 
Alphand et al. 1998; Rial et al. 2008a; Rudroff et al. 2007). 
The racemic cis-bicyclo[3.2.0]hept-2-en-6-one (34) is 
a well-known substrate for CHMO from Acinetobacter 
sp. NCIMB 9871 and for many other BVMOs (Alexan-
der et al. 2012; Alphand and Furstoss 1992; Ferroni et al. 
2014; Fink et al. 2011; Mihovilovic et al. 2005b, 2008; Rial 
et  al. 2008b). After 24  h, the BVMOLepto oxidized this 
racemic substrate almost completely to equal amounts 
of normal and abnormal lactones (Fig.  4) but, unlike 
CHMO from Acinetobacter sp. NCIMB 9871, the ee of 
each regioisomeric lactone was poor (Table 4), The oxi-
dation of the fused ketone 35 or 36 by BVMOLepto prefer-
entially gave abnormal lactones. These compounds (35 or 
36) have been reported as substrates on approximately 10 
Type I BVMOs, and in all cases except the BVMO5 from 
M. tuberculosis H37Rv (Snajdrova et  al. 2006), approxi-
mately equal amounts of regioisomeric lactones or nor-
mal lactones have been preferentially produced (Alphand 
and Furstoss 1992; Fink et  al. 2012; Mihovilovic et  al. 
2005a, 2008; Rial et al. 2008b).

The substrate scope of the enzymes that locate to the 
clade of the phylogenetic tree together with BVMOLepto 
(Fig. 1a) is still unclear due to the little information avail-
able regarding these enzymes. Nevertheless, particu-
lar observations about the substrate profile of some of 
them are worth noting. The BVMO5 from M. tuberculo-
sis H37Rv is the only previous report of a BVMO able to 
oxidize ketones 35 and 36 preferentially to the abnormal 
lactones (Snajdrova et al. 2006). Besides, the BVMO from 
P. fluorescens DSM 50106 showed a narrow substrate 
profile with high selectivity towards aliphatic open-chain 
ketones (C8, C10), but no cyclic or aromatic ketones were 
accepted (Kirschner et  al. 2007). Other members, such 
as the previously mentioned BVMO5 from M. tuber-
culosis H37Rv or the BVMOs 2, 5 and 19 from R. jostii 
also accepted aliphatic open-chain ketones (Bonsor et al. 
2006; Riebel et  al. 2012). Despite the fact that the abil-
ity to oxidize linear ketones is not exclusively limited to 
enzymes of this clade, a certain preference for them could 
be a common feature of these BVMOs.

In summary, we selected the novel BVMOLepto 
as a representative enzyme to explore the subclade 
shown in green in the phylogenetic tree of the current 
BVMOs (Fig.  1a), which had never been experimentally 
approached before. Thus, this work represents the first 
report of a confirmed BVMO that belongs to that sub-
clade. The recombinant BVMOLepto accepted 28 out of 
the 36 reported ketones in whole-cell biotransformations. 
Our results indicate that BVMOLepto catalyzes the oxida-
tion of linear- and branched- small and medium-length 
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ketones as well as alkyl levulinates with excellent regi-
oselectivity towards the corresponding normal esters, 
representing a very attractive biocatalyst for these trans-
formations. This trend is conserved for linear aromatic 
ketones, except for acetophenone that it is not a sub-
strate. Even though the cyclic and fused ketones tested 
seem to be moderate substrates, BVMOLepto was selective 
towards cycloketones with substituents in α-position to 
the carbonyl group and against other substitution pat-
terns. This selective behavior will be the object of future 
studies.
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