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Abstract 

The present work had the goal of screening a batch of 20 fungal strains, isolated from sugar cane plantation soil, in 
order to identify those capable of biosynthesis of silver nanoparticles. These nanoparticles are known to have a large 
and effective application in clinical microbiology. Four strains were found to be capable of biosynthesis of silver nano-
particles. The biosynthesised nanoparticles were characterised by UV–vis spectroscopy, scanning electron microscopy, 
EDX, and XRD. They were found to have an average size of 30–100 nm, a regular round shape, and potential antimi-
crobial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The antimicrobial activity 
was found to be directly related to the nanoparticles concentration. Mycogenic synthesis of nanoparticles is a green 
biogenic process preferable to other alternatives. Because fungi are great producers of extracellular enzymes this 
process makes scaling-up an easier task with high importance for clinical microbiology on the fight against microbial 
resistance, as well as for other industrial applications.
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Introduction
The rise of bacterial and fungal resistance against antimi-
crobials has promoted research of bactericidal nanomate-
rials, especially in the well-known area of silver ions and 
silver-based compounds, including silver nanoparticles 
(Jiravova et al. 2016; Monteiro et al. 2009). The latter have 
emerged as interesting antimicrobial agents due to their 
high surface-area-to-volume ratio and unique chemical 
and physical properties. They were previously described 
as “the largest and fastest growing category of nanotech-
nology-based medicines” (Chen et al. 2016), and provide 
a wide range of possible applications in areas as diverse 
as biomedical (prosthetics bone, surgical instruments), 
fashion (clothes and footwear production), beauty indus-
try (conditioners, toothpaste), and clinical (for the treat-
ment of wounds and infections) (Paschoalino et al. 2010; 
Durán et  al. 2016). Their high demand makes it essen-
tial to develop environmentally benign procedures to 

synthesize silver nanoparticles for industrial and clini-
cal purposes. A promising, reliable and eco-friendly 
approach is the use of natural sources and biological 
systems (Thakkar et  al. 2010). A vast array of biological 
resources is available for this synthesis process, including: 
plants and plant products (Mittal et al. 2013), algae (Patel 
et  al. 2015), fungi (Xue et  al. 2016), yeast (Ortega et  al. 
2015) and bacteria (Pantidos and Horsfall 2014).

Among all biological resources, fungi present higher 
tolerance and metal bioaccumulation abilities, which 
are advantageous characteristics for the production of 
nanoparticles (Mandal et  al. 2006). Another benefit of 
using fungi in nanoparticle synthesis is the ease in the 
scale-up which makes the entire process more cost-effec-
tive (Rahimi et al. 2016). Given that fungi are extremely 
efficient secretors of extracellular enzymes, it is thus 
possible to easily obtain large-scale production of nano-
particles (van den Hondel et al. 1992; Rahimi et al. 2016).

Also, exploring less studied environments can present 
new and different data on microbial diversity. Sugar cane 
plantation soil has not been thoroughly explored, but it has 
been reported that Aspergillus and Rhizopus are the domi-
nant fungal genera present (Abdel-Rahim et al. 1983), and 
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both have been described as being capable of AgNP syn-
thesis (Banu et al. 2011; Zomorodian et al. 2016).

The underlying mechanisms of nanoparticles bio-
synthesis is yet to be fully elucidated. Although several 
factors acting together may determine the biological syn-
thesis reaction, the identification of the most active bio-
molecules as reducing and stabilizing agents is essential 
in choosing the best technical parameters to be employed 
in the biosynthesis (Duschak 2016).

Biologically synthesized silver nanoparticles, are non-
toxic for humans (in low concentrations), and safe inor-
ganic antibacterial agents that have been shown to exhibit 
a strong toxicity to a wide range of microorganisms since 
ancient times (Shanthi et al. 2016; Roy et al. 2013; Anna-
malai and Nallamuthu 2016). It has been considered that 
AgNP mode of action depends on monovalent ionic sil-
ver (Ag+), which is released inside the microbial cells and 
inhibits microbial growth through suppression of res-
piratory enzymes and electron transport components (Li 
et al. 2006; Annamalai and Nallamuthu 2016; Chen et al. 
2016). It has also been described that the AgNP affect the 
cellular membranes (Chen et al. 2016; Durán et al. 2016).

The present study aimed to: (1) identify different fila-
mentous fungal strains capable of synthesizing silver 
nanoparticles (AgNP), (2) characterise the synthesised 
AgNP, and (3) analyse the antimicrobial activity of the 
produced nanoparticles against Gram-negative and -pos-
itive bacteria.

Materials and methods
Chemical compounds
Silver nitrate (PubChem CID: 24,470); sulphanilamide 
(PubChem CID: 5333); N-(1-naphthyl) ethylene diamine 
dihydrochloride (PubChem CID: 15,106); potassium 
nitrate (PubChem CID: 24,434); propanol (PubChem 
CID: 3776).

Microorganisms
A batch of 20 different filamentous fungal strains (iden-
tified as: IPT825, IPT827, IPT829, IPT849, IPT853, 
IPT859, IPT868, IPT856, IPT1005, IPT1008, IPT1009, 
IPT1010, IPT1011, IPT1012, IPT1013, IPT1014, 
IPT1015, IPT1016, IPT1017, and IPT1018), previously 
isolated from sugar cane plantation soil, was supplied by 
Instituto de Pesquisa Tecnológica do Estado de São Paulo 
(IPT, São Paulo, Brazil). All strains were maintained on 
malt extract agar (MEA; 20 g/L malt extract, 20 g/L glu-
cose, 1 g/L peptone and 15 g/L agar) as stock cultures at 
4 °C. These were maintained by regular subculturing.

Biosynthesis of silver nanoparticles
All 20 strains were screened for the biosynthesis of AgNP 
through the process hereby described. From the stock 

cultures grown in MEA, a 6 mm diameter disk from the 
peripheral area of the colony was transferred into a new 
Petri dish containing malt-glucose-yeast and peptone 
(MGYP) medium (3.0 g/L malt extract, 10.0 g/L glucose, 
3.0  g/L yeast extract, 5.0  g/L peptone and 15  g/L agar) 
and incubated for 7 days at 30 °C in the dark. Fungal bio-
mass was obtained by inoculating 5 culture disks (6 mm 
diameter) of each strain in Erlenmeyer flasks containing 
100  mL of MGYP broth (3.0  g/L malt extract, 10.0  g/L 
glucose, 3.0 g/L yeast extract, and 5.0 g/L peptone). Cul-
tures were incubated in an orbital shaker (Quimis, Bra-
zil), for 120  h at 30  °C and 200  rpm. Biomass was then 
harvested by filtration through Whatman filter paper 
Grade 3 and was washed three times with sterile dis-
tilled water. Wet fungal mycelia (10 g) were suspended in 
100 mL of sterilised distilled water and incubated at 30 °C 
with agitation (200 rpm) for 72 h. After this period, cell-
free filtrate was collected by filtration through Whatman 
filter paper Grade 3. Suspensions were filtrated through a 
0.22 µm filter (Millipore) and treated with a silver nitrate 
(AgNO3) solution (1  mM), followed by incubation at 
30 °C with agitation (200 rpm), for 120 h in the dark.

UV–vis absorption spectra (UV–vis)
UV–vis is a widespread method of detection of AgNP 
(Chan and Don 2012). When bioreduction of AgNP 
occurred, a change in colour was observed in the AgNO3 
solution, which turned from yellow into brown. This 
effect has been reported as an indicator of surface plas-
mon resonance (SPR) of AgNP (Chan and Don 2013). 
The position of the plasmonic band detected on the 
solutions of metallic nanoparticles is dependent on sev-
eral parameters such as: size, shape, and polydispersity 
of particles. And, the more the narrow is the band, the 
bigger is the uniformity index of distribution according 
to AgNPs size (Becaro et  al. 2015). Even though, there 
was no monitoring of the increase in absorbance until 
its maximum value, it has been described in the litera-
ture that the incubation period used in this study allows 
for the detection of maximum absorbance, implying the 
maximum concentration of synthesised AgNPs (Muth-
ukrishnan et  al. 2015). The UV–visible spectra of this 
solution was then recorded on UV–Vis Hitachi U-2000 
spectrophotometer (Hitachi, Japan) in a range between 
200 and 800 nm.

Transmission electron microscopy (TEM) 
and energy‑dispersive X‑ray analysis (EDX)
The size and shape of the synthesized AgNP were also 
determined by transmission electron microscopy (TEM) 
as described by Singhal et  al. (2011). A JEOL electronic 
microscope (model JEM-2100) operated at 200  kV was 
used for TEM analysis. The average nanoparticle sizes 
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were measured by counting approximately 100 nano-
particles in different regions of each sample, which were 
then used for the construction of histograms and deter-
mination of the average size of the nanoparticles. Energy 
dispersive X-ray spectroscopy (EDX), model JEOL-JSM 
5410 LV (JEOL, USA). To prepare each sample, AgNP 
were sonicated for 5 min, and a drop of a diluted sample 
was placed onto a carbon-coated copper grid for analysis.

X‑ray diffraction analysis (XRD)
X-ray diffraction was carried out using a Rigaku, Miniflex 
II diffractometer (Rigaku, Brazil), equipped with Cu Kα 
(0.15406  nm) at 40  kV and 30  mA. The diffractograms 
were recorded over the range 20–90 angles. Lyophilized 
nanoparticles were placed on a glass grid containing sili-
con substrate for XRD analysis.

Size and distribution analysis
For the aqueous suspension containing the AgNP, pre-
viously filtered through a 0.22  μm filter, the size distri-
bution and average size of the synthesized AgNP were 
determined by Dynamic Light Scattering (DLS), Zeta-
sizer Nano ZS90 (Malvern Instruments, UK).

Nitrate reductase activity
Nitrate reductase activity in the fungal filtrate was 
assayed by determining the presence of the extracellular 
enzyme according to the procedure described by Hamedi 
et al. (2013). Succinctly, the cell filtrate (5 mL) was mixed 
with an assay medium (30 mM KNO3 and 5% propanol 
in 0.1 M phosphate buffer pH 7.5) in a 1:1 (v/v) propor-
tion and incubated at 30  °C, in the absence of light for 
1 h. A sulphanilamide (SA) solution and a N-(1-naphthyl) 
ethylene diamine dihydrochloride (NEED) solution were 
added to the mixture. The released nitrites on the assay 
medium then reacted with the SA and NEED solutions 
and converted into a pink azodye. The absorbance of the 
resultant pink solutions was measured by UV–visible 
spectrophotometry, at 540  nm. The enzyme activity of 
the fungal cell-free filtrate was determined based on the 
increase in nitrite content of the solution over 1  h and 
expressed as nmol nitrite/h mL.

Antibacterial assay of silver nanoparticles
The antimicrobial activities against the Gram-positive 
bacteria: Staphylococcus aureus IPT246; and the Gram-
negative bacteria: Escherichia coli IPT245, and Pseu-
domonas aeruginosa IPT322, were determined by agar 
plate well diffusion assay. Bacteria were cultured in Muel-
ler–Hinton agar (MHA; 2.0  g/L beef extract, 17.5  g/L 
casein hydrolysate, 1.5  g/L starch, and 17  g/L agar), 
MHA, applying 100 μL of an initial inocullum (106 CFU/
mL) of each strain in the agarised media and uniformly 

spreading. Subsequently, 100  μL of a AgNP solution 
at 1.0, 5.0, 10, 50, and 100  μg/mL concentrations were 
added into 3 mm diameter wells, cut out in the centre of 
the plate, and incubated at 37 °C for 24 h. Streptomycin 
solutions (100 μL) were used, in the same concentration 
values, as positive control, and water as negative control. 
After incubation, the zones of inhibition were measured. 
The assays were performed in triplicate.

Results
Silver nanoparticles biosynthesis
The synthesis of AgNP was detected by UV–vis, and from 
all the strains screened, only four had the aptitude to syn-
thesize AgNP. Those were identified at IPT as: Rhizopus 
arrhizus IPT1011, Rhizopus arrhizus IPT1013, Tricho-
derma gamsii IPT853, and Aspergillus niger IPT856. The 
development of a brown colour was indicative of the for-
mation of AgNP by ion reduction. AgNP were detected 
by the absorbance peak at 418–430  nm after 72  h of 
incubation.

UV–vis absorption spectra (UV–vis)
The intense dark brown colour of the fungal filtrate 
occurred after the addition of AgNO3, after a 24 h time 
period as seen on the representative image (Fig. 1). After 
72  h, the maximum absorption values of the analysed 
strains were: 418  nm (IPT1011), 420  nm (IPT1013), 
426  nm (IPT853) and 430  nm (IPT856). For all the fil-
trates with no addition of AgNO3, a peak between 279 
and 285  nm was detected, which has been previously 
described as being common for biomolecules (Gopinath 
and Velusamy 2013).

Fig. 1  Colour change, for the strain IPT 1013, between a initial and b 
finishing step of the mycogenic reaction
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Fig. 2  TEM images and respective histograms of AgNP synthesized by: a IPT853, b IPT856, c IPT1011, and d IPT1013



Page 5 of 10Ottoni et al. AMB Expr  (2017) 7:31 

Transmission electron microscopy (TEM) 
and energy‑dispersive X‑ray analysis (EDX)
All the biosynthesised AgNP presented a spherical 
shape and their respective histograms are shown in 
Fig. 2. The data observed in the histograms, is presented 
in Table 1. 

EDX characterisation has shown absorption of strong 
silver signal (Fig. 3). The absorption peak at 3 keV is typi-
cal of crystalline nature of the AgNP.

X‑ray diffraction analysis (XDR)
Regarding XRD analysis (Fig.  4), it was possible to 
observe a well-defined face-centered cubic (FCC) struc-
ture of Ag for all materials, at 38°, 44°, 64.5°, 77°, and 82°, 
corresponding to planes (1 1 1), (2 0 0), (2 2 0), (3 1 1), 
(2 2 2) respectively and lattice parameter at 0.409  nm 
according to JCPDF # 04-783.

Using the Debye–Scherrer method (Cullity, 1967), the 
measured average crystallite size of AgNP for each strain 
was: 11  nm for IPT853, 12  nm for IPT856, 16  nm for 
IPT1011, and 8 nm for IPT1013.

The AgNP synthesized by the strain IPT1013, pre-
sented the most deformed pattern by low structured 
carbon support (large peak  ≈25°) (Wang et  al. 2013; 
Modibedi et al. 2011) due to smaller crystallite size. For 
IPT853 and IPT1011 AgNP, it was possible to observe 
two carbon phases structured at 26° and 46° (JCPDF # 
18-311), silver oxides (AgO; JCPDF # 76-1489) at 32° and 
55°, and Ag2O2 (JCPDF # 51-945) at 57°. These oxides 
presented a crystallite size around 4 nm.

Size and distribution analysis
The sizes, distribution and polydispersity index (PDI) for 
AgNP (Table 1) were determined for the strains capable 
of biosynthesis.

The results obtained through TEM were similar to the 
ones obtained by DLS. Similar to what was described by 
Singhal et al. (2011), the size of the metal nanoparticles 
determined by DLS was slightly larger when compared 
to the particle size measured from TEM micrographs. 
According to the authors, this happens because DLS 
measures the hydrodynamic radius.

Nitrate reductase activity
Nitrate reductase activity of the culture supernatants for 
the strains IPT853, IPT856, IPT1011, and IPT1013 was 
detected by the nitrate reductase assay, and analysed over 
a period of 5  days (Fig.  5). No activity was detected for 
the remaining strains tested in this study.

Nitrate reductase activity of the isolates capable of 
nanoparticle synthesis supports the hypothesis of enzy-
matic reduction of silver nitrate into silver nanoparticles 
(Hamedi et al. 2013; Saifuddin et al. 2009).

Antibacterial activity of AgNP
Antibacterial activity of biosynthesized AgNP was eval-
uated by growth inhibition in agar plates. The AgNP 
showed inhibition of growth of E. coli (Fig. 6a), S. aureus 
(Fig. 6b) and P. aeruginosa (Fig. 6c).

Furthermore, and as expected, no inhibition was 
detected when using the negative control—water (data 
not shown).

Discussion
Bioprospection on different and less commonly stud-
ied environments allows us to analyse the microbial 
diversity and encounter microbes specialised in cer-
tain bioproducts, like metal nanoparticles. When com-
pared with physical–chemical methods, the microbial 
biosynthesis of nanoparticles by microorganisms is 
faster, cheaper, more effective, and without the involve-
ment of hazardous chemicals (Durán et  al. 2016; 
Rahimi et  al. 2016). In this study, an initial batch of 
20 fungal strain, isolated from sugar cane plantation 
soil, was screened for its biogenic capacity of produc-
ing AgNP by reducing silver nitrate, and four fungal 
strains (Rhizopus arrhizus IPT1011, Rhizopus arrhizus 
IPT1013, Trichoderma gamsii IPT853, and Aspergillus 
niger IPT856) were detected to be capable of biosyn-
thesizing AgNP. According to our measurements, the 
four selected strains were capable of extracellular bio-
synthesis of AgNP of uniform size and round-shaped, 
with diameters in the range of 30–100 nm. Extracellular 
secretion of enzymes by fungi allows to easily recover 
those enzymes, which in our study were then used for 

Table 1  Size and charge characteristics of synthesized AgNP

Nanoparticles SEM average size (nm) 
(images not shown)

TEM DLS average size Zeta potential (in water) 
(mV)

Average size (nm) AgNP with the average 
size (%)

IPT853 55.1 50 70 63.8 −16.53

IPT856 66.7 70 80 79.3 −28.40

IPT1011 31.6 50 70 53.0 −19.24

IPT1013 36.4 70 80 82.6 −21.35
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nanoparticles synthesis, turning this into an effortless 
biological method.

The exact mechanism of AgNP synthesis by fungi is 
not yet clearly known but previous studies have indicated 
that NADH and NADH-dependent nitrate reductases 
are important factors in the biosynthesis of metal nano-
particles (Ahmad et al. 2003; Hamedi et al. 2013). In the 

present study, the activity of nitrate reductase was meas-
ure for all 20 strains, capable and non-capable of biosyn-
thesizing AgNP. The lack of activity in the cell filtrates for 
the strains that did not show reduction of silver nitrate 
supports the hypothesis of enzyme based biosynthesis.

Furthermore, the differences in intensity, shown 
in Fig.  4, are linked to the structuring process of the 

Fig. 3  EDX spectra of AgNP synthesized by: a IPT853, b IPT856, c IPT1011, and d IPT1013
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silver crystal. The more regular and larger the crystal-
lite formed, the greater the intensity and the smaller 
the width of the Brag peaks. This structure of the crys-
tals is dependent on the chemical environment, pres-
sure, temperature and time; as these last three factors 

were constant for all the samples, we can then say that 
the chemical environment of the fungi was responsible 
for the differentiation of the structures obtained, which 
is linked to the Nitrate reductase activity profiles. This 
activity (Fig. 5), is very low in the initial moments for the 
strain IPT853 (Trichoderma gamsii), while for IPT1011 
(Rhizopus arrhizus) it is more pronounced. We know 
that the initial moments of nucleation of the nanoparti-
cles dictate the structure and stability of the crystal, and 
these differences are what caused the appearance of the 
oxides in other samples. However, all profiles detected by 
XRD reflect Ag, AgO, AgO2 and carbon particles, with 
no other contaminant species crystallized.

The AgNP produced by the Rhizopus arrhizus, Tricho-
derma gamsii and Aspergillus niger strains in this study 
were found to be active against E. coli, S. aureus, and P. 
aeruginosa. Multiple bactericidal mechanisms can act in 
synergy to confer a broad spectrum of activity against dif-
ferent types of bacteria. It is known that the antimicro-
bial activity of AgNP is due to the formation of insoluble 
compounds by inactivation of sulfhydryl groups in the 
cell wall and disruption of membrane bound enzymes 
and lipids resulting in cell lysis (Dorau et al. 2004). And 
it has also been reported that the process may involve 
the binding of AgNP to external proteins to create pores, 
interfering with DNA replication or forming reactive 
oxygen species (ROS) such as hydrogen peroxide, super-
oxide anions, and hydroxyl radicals (Duncan 2011; Durán 
et al. 2016; Jung et al. 2008).

The AgNP of smaller dimensions in this study, pro-
duced by R. arrhizus, were shown to be the most efficient 
against the bacteria tested. In fact, several studies have 
shown that AgNP activity is strongly dependent on the 
NP size (Wu et al. 2014; Tamayo et al. 2014; Rahimi et al. 
2016).

The correlation between the bactericidal effect and 
AgNP concentrations is bacterial class dependent 
(Chernousova and Epple 2013). Just like in previous stud-
ies (Zhang et al. 2014), E. coli was more affected by AgNP 
than P. aeruginosa and the inhibitory effect on the growth 
of S. aureus was less marked than in E. coli as previously 
found by Wu et al. (2014). This strengthens several previ-
ous investigations (Pal et al. 2007; Fayaz et al. 2010; Devi 
and Joshi 2014), that found that Gram-positive and -neg-
ative bacteria have different susceptibility to AgNP, prob-
ably due to differences in their membranes and cell walls 
(Feng et al. 2000).

The fact that bacterial resistance to elemental silver is 
extremely rare (Silver 2003) emphasizes the increased 
interest in using AgNP as potent antimicrobial agent 
in biomedical applications. The increase in publica-
tions on this topic, like our own research, will benefit 
future research and development of cost-effective metal 
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nanoparticles production, with desirable therapeutic 
effects.

The presence of nitrate reductase in the supernatant 
supports the hypothesis of its strong influence on the 
mycogenic synthesis process. All the four biosynthesised 
AgNP were characterised and showed potential antimi-
crobial activity noted through growth inhibition of sev-
eral bacterial species. Furthermore, we observed a direct 
relation between the concentration of AgNP and antimi-
crobial capacity.

Further analyses are needed to fully understand the 
mycogenic synthesis process and the mechanisms 
involved in AgNP production by these strains. Neverthe-
less, our study proves the importance of exploring more 
environments and analyse their microbial community to 

discover novel and/or better bio-products. This will have 
high impact on society and health, as the world is facing 
a massive increase of microbial resistance to most of the 
known and commercially available drugs and antibiotics.
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