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Abstract

Noroviruses (NoVs) have high levels of genetic sequence diversities, which lead to difficulties in designing robust uni-
versal primers to efficiently amplify specific viral genomes for molecular analysis. We here described the practicality of
sequence-independent amplification combined with DNA microarray analysis for simultaneous detection and geno-
typing of human NoVs in fecal specimens. We showed that single primer isothermal linear amplification (Ribo-SPIA) of
genogroup | (Gl) and genogroup Il (GlI) NoVs could be run through the same amplification protocol without the need
to design and use any virus-specific primers. Related virus could be subtyped by the unique pattern of hybridization
with the amplified product to the microarray. By testing 22 clinical fecal specimens obtained from acute gastroen-
teritis cases as blinded samples, 2 were Gl positive and 18 were Gll positive as well as 2 negative for NoVs. A NoV GlI
positive specimen was also identified as having co-occurrence of hepatitis A virus. The study showed that there was
100 9% concordance for positive NoV detection at genogroup level between the results of Ribo-SPIA/microarray and
the phylogenetic analysis of viral sequences of the capsid gene. In addition, 85 % genotype agreement was observed

for the new assay compared to the results of phylogenetic analysis.
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Introduction

Noroviruses (NoVs) are recognized as the leading causa-
tive agents of outbreaks and sporadic cases of nonbac-
terial acute gastroenteritis across all ages in humans,
resulting in more than 267,000,000 annual infections
worldwide and over 200,000 deaths each year among
children under 5 years old in developing countries (Noel
et al. 1999; Patel et al. 2008; Donaldson et al. 2008). It is
estimated that 21 million episodes of gastroenteritis are
caused by NoVs annually in the United States (Scallan
et al. 2001). NoVs are extremely infectious, and as low as
18 viral particles can cause disease (Teunis et al. 2008).
The viruses most often transmitted through the fecal-oral
route in semi-closed communities that favor person-to-
person transmission, including schools, nursing homes,
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hospitals, restaurants and cruise ships. NoVs also spread
by consumption of contaminated foods, making them
leading causes of food borne disease (FAO/WHO 2007).
NoVs are the members of the genus Noroviruses in the
family Caliciviridae (Pringle 1999). The viral genome is
an approximate 7.5-kb positive single-stranded RNA that
contains three open reading frames (ORFs) with a poly
(A) tail at 3’ end (Jiang et al. 1990, 1993). The viruses are
a broad range of enteric pathogens with great genetic and
antigenic diversity (Wang et al. 1994; Green et al. 1995;
Ando and Noel 2000). They segregate into 5 genogroups
in which 3 genogroups (GI, GII, and GIV) are associated
with human infection, with at least 8 genetic clusters in
GI and 17 in GII (Zheng et al. 2006). Since human NoVs
cannot be effectively cultivated in cell culture and labo-
ratory animals, molecular methods have been increas-
ingly used for their detection and characterization.
Recently, reverse transcriptase polymerase chain reac-
tion (RT-PCR) and subsequent genomic sequencing of
the RT-PCR product have become the major means for
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detecting and characterizing the viruses. Generally, an
efficient RT-PCR relies on finding the most conserved
sequences across all virus genotypes to use as primers
in order to efficiently amplify the maximum number of
these diverse genetic variants. However, some sequence
divergence has been observed even within the most con-
served regions of the viral genome. Moreover, high level
of genetic sequence variability of the viruses and con-
tinuous emergence of new virus variants (Siebenga et al.
2009) have complicated the design of robust universal
primers for RT-PCR amplification of that many genetic
variants for subsequent molecular analysis. Sequence-
independent amplification methods (Wang et al. 2002;
Berthet et al. 2008; Chen and Wang 2012) appear to
be attractive alternatives to amplify diverse viruses for
downstream applications including microarray analysis
in that they do not require the prior sequence informa-
tion of viral pathogens to guide to design virus-specific
primers for amplification. This permits amplification of
viral genomes from highly divergent viruses for which
robust consensus primers focus on conserved regions are
difficult to design.

We recently described RNA-based single primer iso-
thermal linear amplification (Ribo-SPIA) of three diverse
human enteric viruses including hepatitis A virus (HAV),
NoV and coxsackievirus B2 (CXKV B2) from minute
amount of starting viral RNAs without using any virus-
specific primers. The amplified products were correctly
identified by subsequent microarray analysis, display-
ing high level of reproducibility and fidelity in appropri-
ate sensitivity ranges (Chen et al. 2013). In this study, we
evaluated the utility of this sequence-independent RNA
amplification method in combination with microarray
analysis for detection and genotyping of the genetically
diverse NoVs in fecal specimens.

Materials and methods

Viral RNA extraction

Twenty two fecal specimens from acute gastroenteritis
were used in this study with approval of the FDA RIHSC.
For control purpose, RNA of Norwalk virus (GIL1,
accession #M87661) and a NoV #186 (GILS8, accession
#HQ169542) were used as reference positive materials.
Viral RNA was isolated using QIAamp viral RNA mini kit
(Qiagen; Valencia, CA) per manufacturer’s instruction.

Sequence-independent amplification of viral RNA

Viral RNA amplification was performed using a previ-
ously described Ribo-SPIA method (Richards et al. 2004)
which is powered by NUGEN Ovation ©® pico WTA sys-
tem (NuGEN Technologies; San Carlos, CA) following
the manufacturer’s directions. The Ribo-SPIA includes 3
sequential reactions: first a reverse transcription reaction
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to generate first strand cDNA using a combination of
random hexamers and poly-T chimeric primer; secondly
a synthesis of DNA/RNA heteroduplex double strand
c¢DNA with DNA polymerase; and thirdly a linear iso-
thermal DNA amplification process in the presence of
RNAse H, DNA polymerase, and a SPIA DNA/RNA chi-
meric primer. The final amplification product is single-
strand cDNA (sscDNA) with sequence complementary
to the original RNA.

Quantification of amplified viral RNA by real-time RT-PCR
For the quantification of virus before and after Ribo-SPIA
amplification, NoV GI- and GII- specific real-time RT-
PCR (rRT-PCR) assays were performed on Norwalk and
186, respectively, in a SmartCycler instrument (Cepheid,
Sunnyvale, CA). The GI- and GII-specific primers and
probes were used in reactions as previously described
(Kageyama et al. 2003). Amplification data were collected
and analyzed with the SmartCycler system software.

Microarray design, hybridization and data analysis

Virus detection and genotyping were assessed using the
FDA_EVIR microarray chips described in previous study
(Chen et al. 2011). The microarray, which was customer
ordered to be manufactured by Affymetrix Inc (Affy-
metrix, Santa Clara, CA), interrogates approximately
91,000 25-mer oligonucleotide probes that derive from
genomes of major human enteric viruses including NoV,
HAV, CXKYV, rotavirus, sapovirus, astrovirus, hepati-
tis E virus, and adenovirus. For each probe, there is a 23
base-pair overlap between consecutive probes within the
same virus strain. The purified Ribo-SPIA products were
treated with DNAse I (Invitrogen) at 37 °C for 1 min, and
then were labeled with biotin-11-ddATP (PerkinElmer,
Waltham, MA) in the presence of Terminal Transferase
(Invitrogen) at 37 °C for 4 h. Microarray hybridization,
washing, and staining were conducted following the
standard procedure described in the GeneChip® Expres-
sion Analysis Technical Manual (Affymetrix).

The microarray chips were scanned with GeneChip®
scanner (Affymetrix). The primary microarray data were
analyzed with a script based on Affymetrix power tools
as described previously (Chen et al. 2011). The results
were considered positive for virus detection when the
normalized hybridization signal intensities from the
virus-specific array elements were three times greater
than the background signal intensity. The background
signal intensity was defined as the mean signal intensity
for all the probe sets on the array.

Direct sequencing and phylogenetic analysis
All virus samples used for the validation of the micro-
array genotyping results were sequenced directly. NoV
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capsid region was amplified by RT-PCR using primer
sets of GISK and G2SK described in a published lit-
erature (Kojima et al. 2002). HAV nested RT-PCR was
performed on the sample 106 to amplify VP1/P2A junc-
tion region as described in previous studies (Robertson
et al. 1992; Bower et al. 2000) using primer sets +2799
(5" ATTCAGATTAGACTGCCTTGGTA 3')/—3375 (5
AGTAAAAACTCCAGCATCCATTTC 3’), and +2891
(5" GGTTTCTATTCAGATTGCAAATTA 3')/—3288 (5’
AACTTCATTATTTCATGCTCCT 3’) in the first and
second around amplification, respectively. The RT-PCR
products were purified and sequenced in both orienta-
tions using BigDye terminator chemistry on automated
ABI Prism DNA analyzer (Applied Biosystems, Fos-
ter City, CA). Sequence analysis was conducted using
ClustalX algorithm (Thompson et al. 1997), which was
followed by phylogenetic analysis using neighbor-joining
method as implemented in MEGA5 program.

Nucleotide sequence accession numbers

The nucleotide sequences are deposited in NCBI Gen-
Bank under accession number KJ415779-KJ415798, and
KJ437448.

Results

Quantification of amplified viral RNA

Quantitative analysis of amplified viral RNA was per-
formed on Nowalk (GI) and 186 (GII), respectively, using
rRT-PCR. Fold change was measured from ACt value
obtained from rRT-PCR results before and after Ribo-
SPIA amplification, combined with dilution factor of 10
for each sample tested. As shown in Fig. 1, Ribo-SPIA
amplification performed on Norwalk (Fig. 1a) and 186
(Fig. 1b) resulted in smaller Ct-values, indicating more
target viral materials generated. Compared to non-ampli-
fication, approximately 5000-fold and 40,000-fold signal
increases were achieved in Norwalk and 186, respec-
tively. This process enabled amplifying both GI and GII
NoV RNAs through the same amplification protocol
without using multiple GI and GII-specific primer sets.

Microarray analysis of clinical fecal specimens

Evaluation of discriminatory efficiency of the Ribo-SPIA/
microarray system was accomplished by using a blinded
panel of 22 RNA samples which were isolated from fecal
specimens. Two positive reference strains of Norwalk
and 186 were also included in the test. The results of
microarray analysis are shown in Fig. 2. Of the 22 speci-
mens tested, 20 gave patterns for specific hybridization
to the probe elements derived from either NoV GI or
GII genomic sequences, indicating positive results for
clear NoV detection. The rest of two samples (10,016
and 184) serving as negative controls lacked detectable
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Fig. 1 Ribo-SPIA method amplified both NoV Gl and Gll genomes. a
NoV Gl-specific real-time RT-PCR on Norwalk virus before (undiluted)
and after Ribo-SPIA (10-fold dilution); ACt = 9 which equals a 5120-
fold increase in signal. b NoV Gll-specific real-time RT PCR on NoV 186
before (undiluted) and after Ribo-SPIA (10-fold dilution). ACt = 12
which equals 40960-fold increase in signal. Negative control for both
Ribo-SPIA and PCR was nuclease free water

hybridization signal to all NoV-derived probes as well
as the probes derived from other virus families, show-
ing that no virus including NoV was detected in them.
Two positive samples (120 and 101), together with a
reference strain of Norwalk, hybridized strongly to the
probes derived from NoV GI genome. Strong hybridiza-
tions to the NoV GII-derived probes were observed in the
rest of positive 18 samples. By visual inspection, sample
142, 195, 165, 162, 216, 1013027, 1013149, 116 and 108
displayed similar hybridization pattern. So did sample
160 and 132 as well as reference strain 186. As shown
in Table 1, a total of seven genotypes (GL.1, GII.2, GIL.3,
GIl4, GIL5, GIL8 and GII12) was identified, among
which GIL4 was the most predominant genotype (11/20,
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Fig. 2 Microarray hybridization results from a blinded panel of 22 fecal samples and two positive reference materials including Norwalk (Gl) and
186 (GlI) strains. Hybridization signal intensity of each virus-specific probe element from the microarray is converted to color visualization scheme
and depicted as a vertical strip. Signal intensity is reflected by the color of the stripe in which black indicates signal below threshold value of 3.0.
Detection probe elements (stripes) are grouped by viral family of origin
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55 %). Furthermore, sample 106 tested positive for NoV
GII was identified to have co-occurrence of HAV as
subgenotype IA. The result here demonstrated that this
amplification protocol coupled with microarray analysis
was able to detect not only individual NoV but also co-
occurrence of NoV and HAV present within the same
sample.

Phylogenetic analysis

The RT-PCR detected GI or GII NoV in 20 specimens
except in 10,016 and 184. This was in line with the posi-
tive microarray results. With 20 NoV-positive samples,
partial viral capsid genes were amplified by RT-PCR and
sequenced. Based on the phylogenetic result, samples
120 and 101 were clustered to genotype GI.8 and GI.1,
respectively. The remaining 18 samples were categorized
into 5 GII genotypes including GIL.4 (11), GIL.8 (2), GIL1
(2), GIL5 (2) and GII.2 (1) as shown in Fig. 3. As a result,
there was 100 % concordance for positive NoV detection
at genogroup level between the results of microarray and
phylogenetic analysis (Table 1). Three samples 120,123
and 102 which were genotyped as GI.1, GII.12 and GII.3,
respectively, in microarray analysis were identified as
GL8, GIL.1 and GIL1 in the phylogenetic result. Thus,
85 % (17/20) genotype agreement was observed between
the results of Ribo-SPIA/microarray and phylogenetic
analysis (Table 1). No statistically significant difference
was detected between the two results (McNemar’s test;
P = 0.2482). In addition, HAV RNA was also detected
by nested RT-PCR in 106 which was NoV GII positive.
Sequence comparison between the nested RT-PCR prod-
uct with other HAV strains revealed that the virus dis-
played the highest sequence similarity to a subgenotype
IB strain HM175/18f (Fig. 4).

Discussion

Reverse transcription followed by PCR reaction with
primer sets designed to amplify specific viral RNA
regions is the method of choice to amplify human NoVs
prior to downstream molecular analysis. However, high
sequence variability of the viral agents posts a challenge
to the design of robust universal virus-specific primer
sets to amplify various virus variants. Recent studies
described the use of multiple GI and GII-specific degen-
erate primer sets for rRT-PCR to detect a wide range of
GI and GII NoVs (Kageyama et al. 2003; Kojima et al.
2002; Richards et al. 2004). Those degenerate primer sets
targeted either ORF1-ORF2 junction or RNA-dependent
RNA polymerase region encoded by ORFlof the viral
genome, indicating their design still relied on the virus
sequence knowledge. In present study, we sought to
establish a universal sequence-independent amplification
procedure suitable for the highly divergent infectious
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agent to prepare sufficient amounts of target nucleic acids
for microarray analysis. By using Ribo-SPIA, both NoV
GI and GII viral RNA could be run through the same
amplification protocol without the need to design and
use any virus-specific primers. Ribo-SPIA amplification
resulted in ~5000-fold and ~40,000-fold increase in RT-
PCR signal for reference strains of Norwalk (GI) and 186
(GII), respectively (Fig. 1). Since GI and GII have been
found to contain at least 8 and 17 genotypes, respectively
(Zheng et al. 2006), ideal diagnostic tests for NoV should
display strong discriminatory power in detecting such a
wide variety of NoV genotypes. In this study, a panel of
22 fecal specimens was used to assess the reactivity of the
system. Of them, 20 samples were observed positive NoV
detection on the microarray showing positive hybridiza-
tion signals (Fig. 2). The clinical sensitivity of the Ribo-
SPIA/microarray system, determined by comparison
with the detection rate by virus-specific RT-PCR with the
same specimens, was 100 % at genogroup level. The spec-
ificity of the system was calculated to be 100 % as well.
This indicates that Ribo-SPIA is readily applicable to the
amplification of multiple sample types of the viruses for
microarray analysis.

In comparison to RT-PCR based assays, which require
the design and optimization of virus-specific primers for
target amplification and only provide presumptive results
for the presence or absence of the queried viruses, this
sequence-independent amplification method offers sev-
eral advantages. It obviates the need for an assumption
to guild testing suspected viral pathogens with multiple
viral-specific primers to amplify targets present in a sam-
ple, thus does not require prior sequence knowledge of
the viral agent for primer design. Furthermore, a number
of viruses cause similar clinical symptoms which make it
difficult to choose correct diagnostic analysis under cer-
tain clinical hypothesis. In such case, the lack of virus-
specific primer sets enables detection of viral agents that
might not be found with virus-specific RT-PCR assays.
Sample 106 that was presumed negative for HAV infec-
tion went merely under NoV RT-PCR test initially. But
the microarray analysis here revealed that a subgenotype
IA HAV and a GII NoV were simultaneously identified
in this sample after Ribo-SPIA amplification (Fig. 2). The
presence of HAV was further confirmed as subgenotype
IB by phylogenic analysis of the sequence of the HAV-
specific RT-PCR product. This parallel detection of
mixed agents present in a specimen would benefit a bet-
ter understanding of etiology of viral disease. Although
there was an identification discrepancy at subgenotype
level between the microarray and phylogenetic results,
the HAV was indeed identified as the same genotype 1.
The discrepant results could be attributed to cross-reac-
tivity between the probes targeting IA and IB genomes
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Fig. 3 Phylogenetic dendrogram of NoV strains based on partial nucleic acid sequences of capsid region was generated using neighbour-joining
method with ClustalX algorithm and MEGAS5 program. Numbers on each branch indicate supporting bootstrap value of 1000 resampled data sets.
NoV strains originating from this study are indicated with black triangles. Putative genotypes are indicated for each cluster

due to high level of genetic sequence similarity shared by
the two groups of subgenotype strains (Robertson et al.

IB of HAV have been observed in previous studies (Chen
et al. 2011, 2013). Similar false genotypic identification of

1992). Certain levels of cross-reactivity between IA and  NoV was also observed in 3 specimens when comparing
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Fig. 4 Phylogenetic dendrogram was constructed based on nucleic acid sequences of HAV VP1/P2A region of 15 strains using neighbour-joining
method with ClustalX algorithm and MEGAS5 program. Numbers on each branch indicate supporting bootstrap value of 1000 resampled data sets.
HAV strain (106) obtained in present study was indicated with black square

to the results obtained in phylogenetic analysis, although
they all fell within the same genogroups. These could be
associated with cross-hybridization due to a combination
factors such as the level of sequence variability, viral load,
and amplification efficiency, which have an impact to the
cross-hybridization pattern of the viruses (Boriskin et al.
2004). Future refinement to the current probe design
involving the selection of only those probes that convey
the highest discriminatory value in identifying viruses
may help address the cross-reactivity issue as described
here.

This study represents the first effort to describe the
application of Ribo-SPIA method to amplify the geneti-
cally diverse NoVs without using any virus-specific prim-
ers for microarray-based detection and genotyping. This
sequence-independent amplification linked to DNA
microarray analysis allowed identification of multiple
NoV genotypes tested in current study. It is expected
that this system will also be able to detect other NoV
genotypes not examined here since the probe elements

derived from those respective viral genomes have already
been printed on the microarray chips. Moreover, the
use of the sequence-independent amplification protocol
eliminates the need for a priori genomic sequence knowl-
edge of the viral agents and thus can extend the range of
applications to other RNA viruses.
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