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Abstract

of milligrams per liter of CT and CFC-11.

A fermentative enrichment culture (designated DHM-1) that grows on corn syrup was evaluated for its
ability to cometabolically biodegrade high concentrations of chloroform (CF), carbon tetrachloride (CT), and
trichlorofluoromethane (CFC-11). When provided with corn syrup and vitamin By, (0.03 mol By, per mol CF),
DHM-1 grew and biodegraded up to 2,000 mg/L of CF in 180 days, with only minor transient accumulation of
dichloromethane and chloromethane. CT (15 mg/L) and CFC-11 (25 mg/L) were also biodegraded without significant
accumulation of halomethane daughter products. The rate of CF biodegradation followed a Michaelis-Menten-like
pattern with respect to the B, concentration; one-half the maximum rate (66 mg CF/L/d) occurred at 0.005 mol By
per mol CF. DHM-1 was able to biodegrade 500 mg/L of CF at an inoculum level as low as 10°® mg protein/L.

The highest rate of CF biodegradation occurred at pH 7.7; activity decreased substantially below pH 6.0. DHM-1
biodegraded mixtures of CT, CFC-11, and CF, although CFC-11 inhibited CF biodegradation. Evidence for compete
defluorination of CFC-11 was obtained based on a fluoride mass balance. Overall, the results suggest that DHM-1 may
be effective for bioaugmentation in source zones contaminated with thousands of milligrams per liter of CF and tens
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Introduction

Over the past two decades, substantial progress has been
made in use of bioremediation for treating halogenated
solvents in groundwater. Nevertheless, in situ bioremedi-
ation strategies for groundwater with high concentrations
of halogenated methanes such as carbon tetrachloride
(CT), chloroform (CF), and trichlorofluoromethane (CFC-
11) are still lacking. Among these compounds, CF is often
the focal point for evaluating the feasibility of bioremedi-
ation because of its high toxicity to most microbes. For in-
stance, inhibition of chlororespiration of chloroethenes by
CF is a concern for sites co-contaminated with CF, and
can only be overcome by removing the CF first (Bagley
et al. 2000). CF and CT rank highly on the Agency for
Toxic Substances and Disease Registry based on their fre-
quency, toxicity, and potential for human exposure at
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National Priority List sites (ATSDR 2013). Although not
ranked by ATSDR, CFC-11 is often a co-contaminant with
CT and CF. For example, approximately 500 mg/L CF,
26 mg/L CFC-11 and 10 mg/L CT were detected in the
source zone at a former industrial site (Shan et al. 2010b).
Bioremediation of mixtures of high concentrations of
halomethanes is especially challenging.

Most previous research on bioremediation of CT, CF
and CFC-11 at elevated concentrations focused on in-
dividual compounds. For example, in the presence of
vitamin B, a fermentative culture grown on dichloro-
methane (DCM) transformed up to 270 mg/L CF (Becker
and Freedman 1994) and a sulfate reducing enrichment
culture developed from anaerobic digester sludge trans-
formed up to 350 mg/L CT (Freedman et al. 1995). The
highest concentration of CFC-11 evaluated previously was
2.2 mg/L and resulted in accumulation of dichlorofluoro-
methane (HCFC-21), which is not an acceptable endpoint
(Krone and Thauer 1992). Although bioaugmentation

© 2014 Shan et al, licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.


mailto:dfreedm@clemson.edu
http://creativecommons.org/licenses/by/2.0

Shan et al. AMB Express 2014, 4:48
http://www.amb-express.com/content/4/1/48

continues to mature as an option for treatment of chlori-
nated ethenes (ESTCP 2005), there has been less progress
with halogenated methanes. SDC-9™ biodegrades CT and
CE, but it has been evaluated at relatively low concentra-
tions, i.e., 2.3 mg/L CT and 3.2 mg/L CF (ESTCP 2005).
Recently, Dehalobacter spp. have been described that re-
ductively dechlorinate up to approximately 60 mg/L of CF
to DCM via organohalide respiration (Grostern et al.
2010; Lee et al. 2012). DCM is not an acceptable endpoint,
but microbes that use DCM as a sole carbon and energy
source have been reported (Freedman and Gossett 1991;
Justicia-Leon et al. 2012; Mégli et al. 1998); Lee et al.
(2012) described a mixture of Dehalobacter spp. that re-
duced 50 mg/L of CF to DCM, which was subsequently
fermented to acetate, CO,, and H,; evaluation of higher
CF concentrations was not reported.

In a microcosm study of the abovementioned in-
dustrial site, we demonstrated that bioaugmentation is a
potentially feasible remediation option for the highest
concentration areas of the plume, containing CT, CFC-
11, and CF (Shan et al. 2010b). Cometabolic biodegrad-
ation of the halomethanes was accomplished via addition
of a fermentative enrichment culture that grows on corn
syrup, along with vitamin B;, at a dose of 0.03 mol B;,
per mol of CT + CFC-11 + CF. Addition of only corn sy-
rup + By, was also effective, but took twice as long. Ac-
cumulation of DCM, chloromethane (CM), HCFC-21,
and chlorofluoromethane (HCFC-31) was minor. Fol-
lowing numerous transfers of the culture (designated
DHM-1) in mineral salts medium (MSM) amended with
corn syrup, CF, and Bj,, we demonstrated that DHM-1
grows equally well in the presence or absence of 500 mg/L
of CF (Shan et al. 2010a). This was promising from the
perspective that bioaugmentation cultures should be able
to grow in the presence of the contaminants.

The objectives of this study were to further characterize
the DHM-1 enrichment culture with respect to its ability
to biodegrade CF at concentrations up to 4000 mg/L, CT
(15 mg/L), and CFC-11 (25 mg/L), individually and in
mixtures; to evaluate the effect of B;, dose and inoculum
level on the maximum rate of CF biodegradation; to deter-
mine the effect of pH on the rate of CF biodegradation,
and to evaluate the fate of CFC-11 using a fluoride mass
balance.

Materials and methods

Inoculum, chemicals and MSM

Experiments were performed with the DHM-1 enrich-
ment culture (ATCC no. PTA-120292) grown on corn sy-
rup (regular type, Sweetener Products Company, Vernon,
CA) and supplemented with cyanocobalamin (i.e., vitamin
By, USP grade; Research Organics, Inc., Cleveland, OH).
The bicarbonate-buffered, sulfide-reduced MSM used to
grow DHM-1 is described elsewhere (Shan et al. 2010a).
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Stock solutions of [*C]CT and [**C]CF were pre-
pared in distilled deionized water at concentrations of
approximately 4.5 pCi per mL, using neat [**C]CT
(1.0 mCi/mmol) and [“*C]JCF (0.5 mCi/mmol) from
American Radiolabeled Chemicals, Inc. (Saint Louis, MO).
CT (99.9%, Sigma-Aldrich, Saint Louis, MO), CF (99.7%,
Sigma-Aldrich), DCM (99.9%, AlliedSignal, Morristown,
NJ), CFC-11 (99%, Sigma-Aldrich), and carbon disulfide
(CS,, 100%, ]J.T. Baker, Center Valley, PA) were obtained
as neat liquids. CM (99.9%, Praxair, Danbury, CT), HCFC-
21 (dichlorofluoromethane, 99%, SynQuest Labs, Alachua,
FL), HCFC-31 (chlorofluoromethane, 99%, SynQuest
Labs), and methane (99.99%, Matheson, Longmont, CO)
were obtained as neat gases. All other chemicals used
were reagent grade.

Transformation of individual halomethanes

The ability of the DHM-1 enrichment culture to biode-
grade individual halomethanes (~15 mg/L CT, 25 mg/L
CFC-11, or 500-4000 mg/L CF) was evaluated with an
initial inoculum of 2.5-5.0 mg/L protein (except in expe-
riments that evaluated lower inoculum levels). Treatments
were prepared with By, (0.03 mol per mol of halomethane,
except in experiments that evaluated lower inoculum
levels), and without Bj,, in 160 mL serum glass bottles
with 100 mL of MSM, in an anaerobic chamber (Coy La-
boratory Products, Inc.) containing an atmosphere of ap-
proximately 98% N, and 2% H,. The initial dose of corn
syrup was 900 mg/L (~960 mg/L as chemical oxygen de-
mand) (Shan et al. 2010a). After purging the headspace
with 30% CO,/70% N, for 1 min, the bottles were sealed
with 20-mm Teflon-faced red rubber septa and aluminum
crimp caps. [**C]CT and [**C]CF were purified on a gas
chromatograph prior to addition to the serum bottles to
provide an initial **C activity of 0.45 pCi/bottle, as previ-
ously described (Shan et al. 2010a). The fate of CFC-11
was assessed based on release of fluoride instead of using
[**C]CEC-11, which was prohibitively expensive.

Non-labeled CF, CT and CFC-11 were added using
neat compounds. Media controls (no substrate, no cul-
ture) with and without B,, were prepared for each halo-
methane. The bottles were incubated quiescently in an
inverted position at room temperature (22-24°C) in the
anaerobic chamber. pH was monitored weekly and
maintained between 6.7-7.7. Decreases in pH indicated
that the corn syrup was undergoing fermentation; when
decreases in pH stopped, a second dose of corn syrup
was added.

The highest concentration of CF tested with DHM-1
in previous investigations was 500 mg/L (Shan et al.
2010a). Experiments in this study evaluated CF concen-
trations of 1000, 2000, and 4000 mg/L. Serum bottles
were prepared as described above, except that only un-
labeled CF was added. Most experiments included water
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controls (WC), consisting of 100 mL of distilled deion-
ized water and CF, CT, and CFC-11.

Effect of B;, concentration and DHM-1 inoculum

The effect of vitamin B;, concentration on CF trans-
formation rates by DHM-1 was evaluated in serum bot-
tles as described above, except that the concentration of
B, was varied from 0.0 to 0.03 mol By, per mol of CF
added (500 mg CF/L =4.19 mM), only one dose of corn
syrup was added, and the bottles were continuously
mixed on a shaker table. Media controls were included
to evaluate abiotic losses of CF. The highest CF biodeg-
radation rate for a given B;, dose was determined by lin-
ear regression of CF concentration versus time. The
results for all Bj, doses were fit (using Matlab, version
7.10.0) to a modified form of the Michaelis-Menten
model:

BIZ

Co
1
B v

Vmax -

where V=rate of CF biodegradation (mg/L/d); V.=
maximum rate of CF biodegradation (mg/L/d); B;,/C, =
molar concentration of By, added, divided by the molar
concentration of CF added; and B;,/K,; = molar ratio at
which V'is one half of V..

The effect of DHM-1 inoculum concentration on the CF
biodegradation rate was evaluated using 10 treatments. Half
of the treatments received varying inoculum levels of DHM-
1; the others consisted of abiotic controls. Treatments were
prepared in the same manner described in the section for
transformation of individual halomethanes, with an initial
CF addition of approximately 500 mg/L (without MCICE).

Effect of pH

Biodegradation rates for 500 mg/L of CF by DHM-1 were
measured at pH levels from 5.0 to 7.7. B;, (0.03 mol B;,
per mol of CF added) and corn syrup (900 mg/L) were
added to all treatments. Serum bottles were prepared as
described above for the By, dose experiment, with the fol-
lowing modifications. The MSM was prepared at the tar-
get pH by varying the amounts of K,HPO, and KH,PO,.
After adding sodium sulfide, the final pH was adjusted
using either H3PO, (1 M) or NaOH (8 M); the MSM was
incubated for six days to ensure equilibrium was reached
at the target pH, before inoculating the DHM-1 enrich-
ment culture (5% v/v). It was not necessary to sparge the
headspace of the bottles with 30% CO,/70% N,. Each time
CF was analyzed on the gas chromatograph, the pH was
measured (0.2 mL sample) and, as needed, increased back
to the target level using NaOH (8 M); decreases in pH
were caused by fermentation of the corn syrup to organic
acids. The highest CF biodegradation rate at a given pH
was determined in the same manner described above for
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varying Bj, doses. Lag times were based on the time from
day zero to the first data point used to determine the high-
est biodegradation rate.

Transformation of mixtures of halomethanes

The ability of DHM-1 to biodegrade mixtures of CT, CF,
and CFC-11 was evaluated in mixtures of two or three
compounds. With two compounds, a single dose of B,
was provided at the start (0.03 mol B;, per mol of total
halomethanes added). When all of the halomethanes
were present, B, was added in a stepwise manner, i.e.,
the first dose of By was made based on the initial moles
of CT; when CT transformation was nearly complete, a
second dose of B;, was made based on the initial moles
of CFC-11, and when CFC-11 was nearly consumed, a
third dose was added based on the initial moles of CF.
Along with the second dose of Bj,, the bottles were rein-
oculated with DHM-1 (i.e., another 5 pg protein per
mL), based on preliminary tests that indicated the cul-
ture’s activity on CFC-11 and CF diminished after com-
pleting transformation of CT, presumably because CT
transformation vyields inhibitory intermediates (Lewis
et al. 2001). Controls with CT, CF and CFC-11 present
included MSM + B;, added (but not inoculated), auto-
claved (AC; inoculated with DHM-1 in MSM and then
autoclaved for 1 h), and water only.

Analytical methods and *C distribution

The amounts of CT, CFC-11, CF, DCM, CM, HCFC-21,
HCFC-31, methane and CS, present in serum bottles
were determined by analysis of headspace samples using
a gas chromatographic method (Shan et al. 2010a, b).
Aqueous phase concentrations were calculated using
Henry’s Law constants (Shan et al. 2010a, b). Fluoride
was measured by ion chromatography (details in
Additional file 1). The amount of **C activity and its
distribution in the gas phase (quantified using gas
chromatography followed by combustion) and liquid
phase were determined as previously described (Shan
et al. 2010a, b). Protein concentration was measured
with a BCA™ protein assay kit (Pierce Chemical Com-
pany) by following the manufacturer’s enhanced
protocol after lysing the cells (Coleman et al. 2002).

Results

Transformation of individual halomethanes

When provided with corn syrup and B;,, DHM-1 readily
biodegraded CT, CFC-11, and CF (Figure 1). Average
transformation rates [i.e., (initial concentration)/(time to
reach the detection limit)] were 1.3, 0.54, and 22 mg/L/d
for CT, CFC-11, and CF, respectively. Reductive deha-
logenation products (i.e., CF, DCM and CM from CT;
HCFC-21 from CFC-11; and DCM and CM from CF) at
the end of the incubation period represented 6% or less
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Figure 1 Transformation of (a) CT; (b) CFC-11; and (c) CF, by
DHM-1 in MSM with corn syrup and B, added. LC = live control
(DHM-1 with corn syrup but without By,); MC + By, = media control
with By,. Daughter products are shown only for the DHM-1 + B,
treatments. | = addition of corn syrup; By, was added only at t=0.
Error bars are the data range for duplicate bottles; when not visible,
the bars are smaller than the symbols. The initial increase in CFC-11
was likely due to insufficient time to establish equilibrium at time
zero between the headspace and liquid phases.
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of CFC-11 and 1% percent of CT and CF. CS, accounted
for 5-16% of the CT consumed, indicating a substitutive
pathway was involved. Over a 14 day period, appro-
ximately 20% of the initial CT was consumed in the
media + By, treatment. No losses occurred in the live
control (i.e., DHM-1 with corn syrup but without B;,) or
in media without B;, (Additional file 1: Figure S1), indi-
cating that abiotic transformation of CT in MSM was
mediated by Bj,. Biotransformation of CFC-11 started
after a lag of approximately 10 days and was complete
by day 48 (Figure 1b). Approximately equal amounts of
HCFC-21 and CS, (i.e, 3 pmol/bottle each) accumu-
lated, while formation of HCFC-31 was negligible. Only
a minor amount of CFC-11 transformation occurred in
the live control and media + B;, control. No transform-
ation of CFC-11 occurred in the MSM control without
By, (Additional file 1: Figure S1). Biotransformation of
CF (513 mg/L) occurred only in the live treatment with
DHM-1, corn syrup, and Bj,; none was observed in the
live control, media + By, control, or in the media without
By, control (Additional file 1: Figure S1). Methane for-
mation was absent in all treatments.

“CO and 'CO, were the dominant products from
transformation of [**C]CT and [**C]CF (Table 1). The
sum of CO and CO, accounted for approximately 70%
of CT or CF transformation. CO, predominated from
CT transformation (i.e., over 50%) while CO was pre-
dominant from CF transformation. Only a minor amount
of CS, accumulated from CT transformation (i.e., 5.2%).
Soluble compounds were the third most significant **C-
labeled product. High performance liquid chromatogra-
phic analysis indicated that the main products were
formate (35-36%) and propionate (14-23%) (Additional
file 1: Table S1). Synthesis of propionate from CO, has
been observed previously, via pathways speculated to in-
clude a reversal of syntrophic propionate degradation or
reductive formation from H, + CO, in combination with
homoacetogenesis (Conrad and Klose 1999).

A mass balance for fluoride release during biodegrad-
ation of CFC-11 by the DHM-1 enrichment culture was
evaluated. In the presence of corn syrup and Bi,, the
average fluoride recovery was 99.5% (Table 2). This takes
into account the fluoride that resided in the minor
amount of HCFC-21 and HCFC-31. Thus, nearly all of
the CFC-11 consumed by DHM-1 in the presence of
corn syrup and Bi, resulted in stoichiometric release of
fluoride. The increase in fluoride coincided with con-
sumption of CFC-11 (Additional file 1: Figure S2). Fluor-
ide was also detected in the abiotic control containing
MSM and By,, although only 44% as much CFC-11 was
degraded and the percent recovery for fluoride was not
as high. There was no significant consumption of
CFC-11 or release of fluoride in the treatments with-
out B, added.
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Table 1 Products from biodegradation of ['*C] CT and ['*C] CF by DHM-1

14C added as: % of '*C added recovered as®

CH, co ™M DCM cs, CF cT other® co, Soluble® Loss
cT 0.1 14 03 0 52 22 0 0.1 51 27 0
CF 05 67 0 0 0 09 02 08 27 15 13

“Numbers in bold represent the main products formed.
bOther volatile "C-labeled compounds that were not identified.

1C-labeled compounds that remained after sparging samples under acidic conditions; HPLC analysis indicated the majority of this fraction consisted of organic

acids (see text).

4Loss = amount of "C added that was not accounted for in the other compounds or categories listed.

The ability of the DHM-1 enrichment culture to biode-
grade CF concentrations above 500 mg/L was evaluated.
Approximately 1000 mg/L (i.e., 900 pmol/bottle) was
transformed in 85 days and 2000 mg/L (ie., 1800 pmol/
bottle) in 180 days (Figure 2). Accumulation of DCM and
CS, was negligible (<0.5 and 1.0 umol/bottle, respectively).
WC results indicated that diffusive loss of CF was minor.
Activity on CF ceased at 4000 mg/L (ie., 3600 pmol/
bottle), which is approximately 50% of the aqueous solu-
bility of CF at 20°C. Growth of DHM-1 on corn syrup,
however, was not adversely affected by the high concen-
trations of CF. Protein concentrations increased to 89, 97
and 128 pg/mL for treatments that received 1000, 2000
and 4000 mg/L of CF, respectively; this is similar to previ-
ously reported levels for DHM-1 in the absence of CF, and
in the presence of CF at 500 mg/L (Shan et al. 2010a). Al-
though growth of DHM-1 in the presence of CT or CFC-
11 was not monitored, an increase in the turbidity of the
MSM a few days after inoculation suggested that DHM-1
also grows on corn syrup in the presence of CT and
CEC-11.

Effect of B,, concentration and pH on CF biodegradation
by DHM-1

Reducing the molar ratio of B, added per mole of CF
added from 0.03 mol By, per mol of CF added to 0.01
resulted in a moderate decrease in the maximum CF
transformation rate, while the rate fell more quickly
below 0.01 (Figure 3). Fitting the data to equation 1 re-
sulted in a V,,,,, of 66 +4.6 mg CF/L/d and a B;,/K,, ra-
tio of 0.0050 + 0.0010 mol B;, per mol CF (+values
indicate 95% confidence intervals). Assuming a yield of

Table 2 Fluoride mass balance from degradation of CFC-11

50-60 mg protein/L from the single dose of corn syrup
added (Shan et al. 2010a), V,,,,. can be normalized to ap-
proximately 1.2 mg CF/mg protein/d.

Maximum CF biodegradation rates for DHM-1 in-
creased with increasing pH from 5.0 to 7.7 (Figure 4).
There appeared to be a plateau in the pH range from 6.4
to 7.3, while the rate at pH 7.7 almost doubled relative
to that in the circumneutral pH region, reaching 50 mg/
L/d. The activity of DHM-1 diminished substantially
below pH 6.0 and ceased at pH of 5.0. Lag times (i.e.,
the time prior to the onset of a maximum rate) de-
creased as pH increased.

Effect of DHM-1 inoculum level on CF biodegradation

Biodegradation of CF proceeded at a high rate even at
a DHM-1 inoculum level as low as 107 percent (v/v)
(Figure 5, treatments A-E). The 5% inoculum (v/v) cor-
responds to a protein concentration of approximately
5 mg/L, so the 107® inoculum equates to approximately
10"® mg/L. Headspace monitoring continued until CF fell
below the maximum contaminant level (MCL) for tri-
halomethanes (80 pg/L). At a 5% inoculum inoculum
level, 23 days of incubation was required, while 39 days
was required for the 107%% inoculum level. Correspond-
ingly, the maximum initial degradation rate was approxi-
mately twice as high at the highest inoculum (30 mg/L/d)
compared to the lowest (17 mg/L/d). Accumulation of
DCM and CM amounted to less than 0.6% of the CF
consumed. Losses from uninoculated controls (treat-
ments F-I) were comparatively minor. These results de-
monstrate the potential for DHM-1 to biodegrade high

Treatment No. of CFC-11 consumed F~ released CHCI,F formed CH,CIF formed F~ recovery (%)°
bottles (umol/bottle) (umol/bottle) (umol/bottle) (umol/bottle)

DHM-1 + CS + B, 14 616+2.19 574+46 31+£10 08+09 99.5+80

DHM-1 + CS¢ 3 18+12 0 09+0.1 0.09 £ 0.04 -

MSM + By, 6 271 +£27 177+50 05+03 0.06 £ 0.05 680+ 10.1

MSM 6 15+30 0 0.06 +0.03 02+03 -

“Headspace monitoring results are presented in the Supporting Information.
bCalculated according to equation S-1 in Additional file 1.

‘Includes three bottles that also received 500 mg/L CF, which had no effect of the F" mass balance, CS = corn syrup.

9+ = Standard deviation.
fInoculum was washed in fresh MSM to avoid carryover of B;,.
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Figure 2 CF biodegradation by DHM-1 in MSM with one dose
of By, (at t=0) and two doses of corn syrup (arrows); WC =
water control. Error bars represent the data range for duplicate
bottles; when not visible, the bars are smaller than the symbols.

concentrations of CF even at a low initial cell density, which
is an essential characteristic for use in bioaugmentation.

Biodegradation of mixtures of halomethanes

In the presence of 12 mg/L CT (13 umol/bottle) and
512 mg/L CF (463 pmol/bottle), DHM-1 biodegraded
both halomethanes simultaneously, with no apparent ef-
fect of CT on CF or vice versa (Figure 6a). A low amount
of CS, (5.2 pmol/bottle) accumulated, accounting for
1% of the CT + CF transformed. Formation of DCM
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Figure 4 Impact of pH on biodegradation rates for CF by
DHM-1 and the length of the lag phase prior to the onset of
biodegradation. Error bars in both directions indicate the 95%
confidence interval, based on results from triplicate bottles at
each pH.
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mol B4,/mol CF,
Figure 3 Effect of vitamin B,, concentration on maximum CF
transformation rates by DHM-1; B;, concentrations are
expressed in terms of mol B;, added per mol CF initially added
(CF,). The line represents the fit to equation 1.

(0.6 pmol/bottle) was negligible. With a mixture of
23 mg/L CFC-11 (55 pumol/bottle) and 509 mg/L CF
(461 pmol/bottle), DHM-1 biodegraded CFC-11 faster
than when CFC-11 was added individually (Figure 1b
versus 6b), possibly related to changes in membrane
fluidity or homeoviscous and homeophasic adaptation
during growth in the presence of a high concentration
of CF (Shan et al. 2010a). In contrast, CF transformation
was inhibited by the presence of CFC-11; CF transfor-
mation did not begin until the concentration of CFC-11
dropped to 6 mg/L (14 pmol/bottle) on day 18. Minor
amounts of CS,, DCM and HCFC-21 accumulated in
comparison to the amount of halomethanes removed.
With a mixture of 16 mg/L CT (17 pmol/bottle) and
24 mg/L CFC-11 (57 pumol/bottle), CT was consumed in
10 days; following a lag phase of approximately 10 days,
CFC-11 was consumed by day 47 (Figure 6¢). These pat-
terns are similar to what occurred with the individual
compounds, indicating no apparent interaction between
CT and CFC-11. The combination of CT and CFC-11 re-
sulted in more CS, accumulation than the other two-
component mixtures, accounting for 7.7% of the CT and
CFC-11 transformed. Formation of HCFC-21 was also
slightly higher than in the mixture of CFC-11 and CE
while formation of DCM was negligible.

When CT, CFC-11, and CF (11, 24, and 500 mg/L, re-
spectively) were added at the same time, the pattern of
transformation was similar to the two-component mix-
tures. CT (12 umol/bottle) transformation was comple-
ted first, followed by CFC-11 (57 pmol/bottle) and then
CF (456 pmol/bottle) (Figure 7d). One difference bet-
ween the live treatments shown in Figures 6 and 7d is
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the pattern of B;, addition. With the two-component
mixtures (Figure 6), Bj, was added only at the start.
With the three-component mixture (Figure 7d), the same
molar ratio of Bj, was applied, although the additions
were timed to coincide with the beginning of transform-
ation of each compound. Accumulation of CS,, DCM,
CM, HCEC-21, and HCFC-31 was negligible. Results for
controls are shown in Figure 7, panels a, b and c. Nearly
complete transformation of CT occurred by day 113 in
the media control and AC, versus no significant losses
from the WC. Approximately 33% and 11% of CFC-11
was removed in the autoclaved and media controls, re-
spectively, while loss of CFC-11 in WC was minor. Losses
of CF in all of the controls were minor. These results
demonstrated that transformation of CF was exclusively
a biotic process, while abiotic processes contributed to
transformation of CT and CFC-11. However, transform-
ation of CT and CFC-11 was considerably faster in the
presence of live cells, and DHM-1 was able to achieve
complete transformation of a mixture of CT, CFC-11
and CF at high initial concentrations in less than four
months in MSM.

Discussion

The feasibility of using bioremediation to clean up halo-
genated solvents in the vicinity of nonaqueous phase lig-
uids depends in part on the ability of microbes to grow
in the presence of contaminant concentrations that
approach their aqueous solubility limit. The results of
this study indicate that the DHM-1 enrichment culture
grows in the presence of at least 4000 mg/L CF, approxi-
mately one half its aqueous solubility, and the culture re-
tains its ability to biodegrade CF at 2000 mg/L. When
transforming 500 mg/L of CF, the two Pantoea spp. iso-
lated from DHM-1 adapted their growth by alteration of
their membrane fluidity or homeoviscous and homeo-
phasic adaptation (Shan et al. 2010a). A similar response

at the higher CF concentrations evaluated in this study
seems likely. Tolerance of high concentrations of haloge-
nated compounds appears to be a characteristic of En-
terobacter species (Sharma and McCarty 1996), which
are closely related to Pantoea (Shan et al. 2010a). Several
bioaugmentation cultures that are enriched in Dehalococ-
coides and used to treat chlorinated ethenes also possess
the ability to grow at the high solvent concentrations
found near nonaqueous phase liquids (ESTCP 2005).
DHM-1 was effective in transforming CT (~11 mg/L)
and CFC-11 (~24 mg/L) as well as CF. Based on expe-
riments with '*C-labeled CT and CF, the primary trans-
formation products are environmentally benign (CO,,
CO and organic acids). Similar results were obtained
with DHM-1 when it was in an earlier stage of develop-
ment (Shan et al. 2010b). Although [Y“C]CFC-11 was
not used in this study, the majority of the CFC-11 con-
sumed was accounted for as fluoride and no volatile
products were detected, suggesting the primary trans-
formation products were nonhazardous. DHM-1 did not
produce significant levels of DCM and CM from CT and
CF. DCM and CM are not necessarily problematic, since
both are readily fermentable (Mégli et al. 1998). In con-
trast, little is known about the anaerobic biodegradability
of HCFC-21 and HCFC-31; if significant levels are
formed from CFC-11, it is unclear how quickly they can
be degraded. Preliminary experiments indicate an anaer-
obic culture that grows on DCM as its sole substrate
was unable to utilize HCFC-31 (Shan 2009).
Halomethanes are often found in mixtures at hazard-
ous waste sites. DHM-1 was effective in transforming
mixtures of CT, CFC-11 and CF. Consistent with general
expectations for halomethanes (Wackett et al. 1992), CT
was transformed first, followed by CFC-11 and then CF.
The inhibitory effect of CFC-11 on CF is a potential con-
cern, since the average rate of CFC-11 transformation by
DHM-1 was approximately 40-fold slower than CF.
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Figure 6 Performance of DHM-1 in transforming mixtures of
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corn syrup and B;, added (t = 0). Arrows indicate addition of comn
syrup. Error bars are the data range for duplicate bottles; when not
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An important consideration for cultures used in bio-
augmentation is the required inoculum level. For chlori-
nated ethenes, a commonly used target is 10" cells/L of
Dehalococcoides (ESTCP 2010). Assuming a unit mass of
1.6 x 10™'* g/cell (Cupples et al. 2003) and one half of
the cell mass is protein, this equates to an inoculum
of 8 x 107> mg/L protein. DHM-1 was able to bio-
degrade 500 mg/L of CF at a high rate with a volumetric
addition as low as 107 percent; this equates to a
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Figure 7 Behavior of a mixture of halomethanes in controls
(@, b and c) and (d) live bottles with DHM-1 and corn syrup + B,
in MSM. | = addition of com syrup; ¢ = addition of B12; § = reinoculation
with DHM-1; WC = water controls, MC + B12=mediacontrol with B12,
and AC = autoclaved control with B12. Averages forduplicate bottles are
shown. Error bars in panel d represent the datarange; when not visible, the
bars are smaller than the symbols.

concentration of 1078 mg/L protein, several orders of
magnitude lower than the target for Dehalococcoides. This
suggests that achieving an adequate inoculum in situ will
not be problematic.

The catalytic degradation of halogenated compounds
by Bj, and other transition metal coenzymes under low
redox conditions has long been recognized (e.g., Gantzer
and Wackett 1991; Wackett et al. 1992). One of the con-
cerns with using By, along with DHM-1 for bioaugmen-
tation is the culture’s relatively high requirement for Bj,.
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In a previous study we used a By, molar dose of 3%, i.e.,
0.03 mol B;, per mol CF (Shan et al. 2010a). Varying the
By dose in this study indicated a half saturation value of
0.005 mol B;,/mol CF. A ratio 0.005 mol B;,/mol CT
also significantly improved the rate of CT degradation in
a methanogenic sludge consortium, at a CT concentra-
tion of 15.4 mg/L (Guerrero-Barajas and Field 2005).
Nevertheless, for halomethane concentrations in the
hundreds of mg/L, the B, required by DHM-1 is several
orders of magnitude higher than what is needed to grow
Dehalococcoides (He et al. 2007), for which B, functions
as a cofactor for reductive dehalogenases (Schipp et al.
2013).

Aquifer pH is a significant concern for bioaugmenta-
tion, since many cultures lose effectiveness at pH levels
below 6 or above 8. The highest pH evaluated in this
study was 7.6, which yielded a higher rate than in the
circumneutral pH region (6.3-7.3; Figure 4). CF bio-
degradation rates decreased significantly below 6.0 and
activity essentially ceased at pH 5.0. This is similar to the
behavior of many Dehalococcoides enrichment cultures
(ESTCP 2005; Vainberg et al. 2009). The difficulties asso-
ciated with adjusting aquifer pH include non-homogenous
distribution of the buffering agent and the potential for
clogging due to precipitation when pH is increased.

For contaminant plumes with high concentrations of
halomethanes that are not undergoing natural attenu-
ation, the options for bioremediation are limited. The
benefits of using a culture such as DHM-1 include its
high rate of CF transformation; its ability to transform
mixtures of CT, CF, and CFC-11; the conversion of these
halomethanes to environmentally benign products; its
growth on an inexpensive primary substrate (corn syrup);
and its ability to grow in the presence of CF at levels at
least as high as 4000 mg/L. The culture also retains its
ability to anaerobically transform CF after exposure to air
for as long as one day (Additional file 1: Figure S3). Fur-
ther studies are needed to validate the use of DHM-1
under field conditions, and to determine if lower cost for-
mulations of By, can be developed, e.g., using the fermen-
tation product from cultures that synthesize By, with a
lesser degree of purification.

Additional file

Additional file 1: Fluoride Measurements; Abiotic Controls Figure S1.
Soluble Products from Biodegradation of CT and CF Table S1. Fluoride Mass
Balance Figure S2. and Ability of DHM-1 to Tolerate Exposure to
Oxygen Figure S3.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
HS carried out the experiments to evaluate biodegradation of CT, CF, and
CFC-11, individually and in mixtures, as well as the biodegradability of CF at

Page 9 of 10

concentrations above 500 mg/L. HW and RY performed experiments on the
effect of pH and B, on the biodegradation rate for CF, including the parameter
estimation for equation 1. PJ carried out experiments to determine the
mass balance on fluoride during biodegradation of CFC-11 and the
effect of inoculum level on the rate of CF biodegradation. DLF conceived of the
study, and participated in its design and coordination and helped to draft the
manuscript. All authors read and approved the final manuscript.

Acknowledgments
HS, HW, RY and PJ were supported by teaching assistantships from Clemson
University while this research was conducted.

Author details

1PeroxyChem Environmental Solutions (East Asia), Room 5B16, West Wing,
Hanwei Plaza, 7 Guanghua Road, Chaoyang District, Beijing 100004, China.
“Department of Environmental Engineering and Earth Sciences, Clemson
University, Box 340919, 29634-0919 Clemson, SC, USA.

Received: 8 May 2014 Accepted: 14 May 2014
Published online: 14 June 2014

References

ATSDR (2013) The ATSDR 2011 Substance Priority List. Agency for Toxic
Substances and Disease Registry. http://www.atsdr.cdc.gov/spl

Bagley DM, Lalonde M, Kaseros V, Stasiuk KE, Sleep BE (2000) Acclimation of
anaerobic systems to biodegrade tetrachloroethene in the presence of
carbon tetrachloride and chloroform. Wat Res 34(1):171-178

Becker JG, Freedman DL (1994) Use of cyanocobalamin to enhance anaerobic
biodegradation of chloroform. Environ Sci Technol 28(11):1942-1949

Coleman NV, Mattes TE, Gossett JM, Spain JC (2002) Biodegradation of
cis-dichloroethene as the sole carbon source by a 3-proteobacterium.
Appl Environ Microbiol 68(6):2726-2730

Conrad R, Klose M (1999) Anaerobic conversion of carbon dioxide to methane,
acetate and propionate on washed rice roots. FEMS Microbiol Ecol
30(2):147-155

Cupples AM, Spormann AM, McCarty PL (2003) Growth of a Dehalococcoides-like
microorganism on vinyl chloride and cis-dichloroethene as electron
acceptors as determined by competitive PCR. Appl Environ Microbiol
69(2):953-959

ESTCP (Environmental Security Technology Certification Program) (2005)
Bioaugmentation for Remediation of Chlorinated Solvents: Technology
Development, Status and Research Needs. http://www.clu-in.org/download/
remed/Bioaug2005.pdf

ESTCP (Environmental Security Technology Certification Program) (2010)
Bioaugmentation for Groundwater Remediation. Cost and Performance
Report #ER-0515. https://www.clu-in.org/download/techfocus/biochlor/
DNAPL-ER-0515-C&P pdf

Freedman DL, Gossett JM (1991) Biodegradation of dichloromethane and its
utilization as a growth substrate under methanogenic conditions.
Appl Environ Microbiol 57(10):2847-2857

Freedman DL, Lasecki M, Hashsham S, Scholze R (1995) Accelerated
biotransformation of carbon tetrachloride and chloroform by sulfate-
reducing enrichment cultures. In: Hinchee RE, Leeson A, Semprini L (ed)
Bioremediation of Chlorinated Solvents. Bioremediation, vol 4. Battelle,
Columbus, OH, pp 123-138

Gantzer CJ, Wackett LP (1991) Reductive dechlorination catalyzed by bacterial
transition-metal coenzymes. Environ Sci Technol 25(4):715-722

Grostern A, Duhamel M, Dworatzek S, Edwards EA (2010) Chloroform respiration
to dichloromethane by a Dehalobacter population. Environ Microbiol
12(4):1053-1060

Guerrero-Barajas C, Field JA (2005) Enhancement of anaerobic carbon
tetrachloride biotransformation in methanogenic sludge with redox active
vitamins. Biodegradation 16(3):215-228

He J, Holmes VF, Lee PKH, Alvarez-Cohen L (2007) Influence of vitamin By, and
cocultures on the growth of Dehalococcoides isolates in defined medium.
Appl Environ Microbiol 73(9):2847-2853

Justicia-Leon SD, Ritalahti KM, Mack EE, Loffler FE (2012) Dichloromethane
fermentation by a Dehalobacter sp. in an enrichment culture derived from
pristine river sediment. Appl Environ Microbiol 78(4):1288-1291

Krone UE, Thauer RK (1992) Dehalogenation of trichlorofluoromethane (CFC-11)
by Methanosarcina barkeri. FEMS Microbiol Lett 90:201-204


http://www.biomedcentral.com/content/supplementary/13568_2014_48_MOESM1_ESM.docx
http://www.atsdr.cdc.gov/spl
http://www.clu-in.org/download/remed/Bioaug2005.pdf
http://www.clu-in.org/download/remed/Bioaug2005.pdf
https://www.clu-in.org/download/techfocus/biochlor/DNAPL-ER-0515-C&P.pdf
https://www.clu-in.org/download/techfocus/biochlor/DNAPL-ER-0515-C&P.pdf

Shan et al. AMB Express 2014, 4:48
http://www.amb-express.com/content/4/1/48

Lee M, Low A, Zemb O, Koenig J, Michaelsen A, Manefield M (2012) Complete
chloroform dechlorination by organochlorine respiration and fermentation.
Environ Microbiol 14(4):883-894

Lewis TA, Paszczynski A, Gordon-Wylie SW, Jeedigunta S, Lee C-H, Crawford RL
(2001) Carbon tetrachloride dechlorination by the bacterial transition
metal chelator pyridine-2,6-bis (thiocarboxylic acid). Environ Sci Technol
35(3):552-559

Mégli A, Messmer M, Leisinger T (1998) Metabolism of dichloromethane by the
strict anaerobe Dehalobacterium formicoaceticum. Appl Environ Microbiol
64(2):646-650

Schipp CJ, Marco-Urrea E, Kublik A, Seifert J, Adrian L (2013) Organic cofactors in
the metabolism of Dehalococcoides mccartyi strains. Philos Trans R Soc B
368(1616). doi:10.1098/rstb.2012.0321

Shan H (2009) Development of Strategies for Enhanced In Situ Bioremediation of
High Concentrations of Halogenated Methanes. Ph.D. Thesis, Clemson
University. Clemson University, Clemson, SC

Shan H, Kurtz HD, Jr, Mykytczuk N, Trevors JT, Freedman DL (2010a) Anaerobic
biotransformation of high concentrations of chloroform by an enrichment
culture and two bacterial isolates. Appl Environ Microbiol 76(19):6463-6469

Shan H, Kurtz HD, Jr, Freedman DL (2010b) Evaluation of strategies for anaerobic
bioremediation of high concentrations of halomethanes. Wat Res 44:1317-1328

Sharma PK, McCarty PL (1996) Isolation and characterization of a facultatively
aerobic bacterium that reductively dechlorinates tetrachloroethene to
cis-1,2-dichloroethene. Appl Environ Microbiol 62:761-765

Vainberg S, Condee C, Steffan R (2009) Large-scale production of bacterial
consortia for remediation of chlorinated solvent-contaminated groundwater.
J Indus Microbiol Biotechnol 36(9):1189-1197

Wackett LP, Logan MSP, Blocki FA, Bao-li C (1992) A mechanistic perspective on
bacterial metabolism of chlorinated methanes. Biodegradation 3:19-36

doi:10.1186/513568-014-0048-5

Cite this article as: Shan et al.: Biodegradation of high concentrations of
halomethanes by a fermentative enrichment culture. AMB Express

2014 4:48.

Page 10 of 10

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Abstract
	Introduction
	Materials and methods
	Inoculum, chemicals and MSM
	Transformation of individual halomethanes

	Effect of B12 concentration and DHM-1 inoculum
	Effect of pH
	Transformation of mixtures of halomethanes
	Analytical methods and 14C distribution

	Results
	Transformation of individual halomethanes
	Effect of B12 concentration and pH on CF biodegradation by DHM-1
	Effect of DHM-1 inoculum level on CF biodegradation
	Biodegradation of mixtures of halomethanes

	Discussion
	Additional file
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

