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Cellulolytic potential of thermophilic species from
four fungal orders
Peter Kamp Busk* and Lene Lange
Abstract

Elucidation of fungal biomass degradation is important for understanding the turnover of biological materials in
nature and has important implications for industrial biomass conversion. In recent years there has been an
increasing interest in elucidating the biological role of thermophilic fungi and in characterization of their industrially
useful enzymes. In the present study we investigated the cellulolytic potential of 16 thermophilic fungi from the
three ascomycete orders Sordariales, Eurotiales and Onygenales and from the zygomycete order Mucorales thus
covering all fungal orders that include thermophiles. Thermophilic fungi are the only described eukaryotes that can
grow at temperatures above 45°C. All 16 fungi were able to grow on crystalline cellulose but their secreted
enzymes showed widely different cellulolytic activities, pH optima and thermostabilities. Interestingly, in contrast to
previous reports, we found that some fungi such as Melanocarpus albomyces readily grew on crystalline cellulose
and produced cellulases. These results indicate that there are large differences in the cellulolytic potential of
different isolates of the same species. Furthermore, all the selected species were able to degrade cellulose but the
differences in cellulolytic potential and thermostability of the secretome did not correlate to the taxonomic
position. PCR amplification and sequencing of 22 cellulase genes from the fungi showed that the level of
thermostability of the cellulose-degrading activity could not be inferred from the phylogenetic relationship of the
cellulases.
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Introduction
Fungi are important organisms for degradation of plant
material in nature. They achieve this by means of secreted
enzymes that are stable even under harsh environmental
conditions. These same properties make the fungal
enzymes suitable for industrial use. One example is
fungal cellulases that are deployed in biorefineries for
conversion of biomass to fermentable sugars and in the
paper, textile and detergent industries (Karmakar and
Ray 2011; Kuhad et al. 2011).
The cellulases are classified in the glycoside hydrolase

(GH) families (www.cazy.org) (Henrissat and Davies
1997). Several different strategies involving many enzyme
classes are used in natural degradation of recalcitrant
biomass (Dashtban et al. 2009). However, industrial use
of cellulases has mainly been focused on endo-1,4-β-D-
glucanase and two types of cellobiohydrolases acting
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respectively from the reducing and from the non-reducing
end of the polymer (Banerjee et al 2010). Additional
industrially used cellulose-degrading enzymes are β-
glucosidases, which degrade β-D-glucose oligomers to
glucose and the GH61 proteins, which boost cellulose
decomposition by oxidative degradation of the glucose
polymer (Harris et al. 2010; Langston et al. 2011; Quinlan
et al. 2011; Westereng et al. 2011).
Biomass decomposition by mesophilic fungi has been

extensively studied (Dashtban et al. 2009). Whereas
enzymes from mesophilic fungi are typically effective
at 50°C several thermophilic fungi produce more
thermostable enzymes that can be used at temperatures
up to 70°C (Murray et al. 2004; Parry et al. 2002; Venturi
et al. 2002; Voutilainen et al. 2008; Wojtczak et al. 1987).
This high temperature stability is an important asset
for industrial use. For example, it has been shown that
a mixture of thermostable cellulases exhibits high
lignocellulose degrading capacity with a temperature
optimum of 65°C (Viikari et al. 2007).
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The known thermophilic fungi are either ascomycetes
belonging to the orders Sordariales, Eurotiales, and
Onygenales or zygomycetes of the order Mucorales (Berka
et al. 2011; Morgenstern et al. 2012). These organisms are
the only described eukaryotes that can grow at tempera-
tures above 45°C. In nature, thermophilic fungi are typically
found in compost, wood chip piles, stored grains, animal
dung and other environments that are self-heating due to
degradation of plant materials (Johri et al. 1999). Although
such material often contains high concentrations of cellu-
lose some thermophilic fungi are poor cellulose-degraders
and seem to utilize sugars released by cellulolytic species
in the biotope (Maheshwari et al. 2000). Therefore,
thermophilic fungi can differ greatly in their cellulolytic
potential.
The thermophilic fungus Thermoascus aurantiacus of

order Eurotiales has been studied intensively. It grows
readily on cellulose (Romanelli et al. 1975) and produces
thermostable cellulases and other enzymes (Gomes et al.
2000; Hong et al. 2003; Hong et al. 2007; Khandke et al.
1989; Parry et al. 2001; Parry et al. 2002). One of the
interesting enzymes produced by T. aurantiacus is a
copper-dependent monooxygenase of the GH61 family
(Harris et al. 2010). Several GH61 proteins degrade
cellulose by an oxidative mechanism thereby boosting
the action of cellulases (Langston et al. 2011; Quinlan
et al. 2011; Westereng et al. 2011). The GH61 from T.
aurantiacus exhibits high activity in a boosting assay
(Harris et al. 2010). The high cellulolytic potential of this
fungus is underpinned by the report that extracellular
enzymes from T. aurantiacus release the same amount
of sugars from pretreated switchgrass as the commercial
cellulase blend Cellic Ctec2 (Novozymes, Bagsvaerd,
Denmark) at the same protein load (McClendon et al.
2012). In addition to the high activity, the T. aurantiacus
enzymes have higher thermostability than Cellic Ctec2,
which probably consists mostly of enzymes from mesophilic
fungi although the precise composition has not been
disclosed by the manufacturer.
Other thermophilic fungi that produce thermostable

cellulases are Talaromyces emersonii (Murray et al. 2004;
Voutilainen et al. 2010), Myceliophthora thermophila
(Roy et al. 1990), Chaetomium thermophilum and
Acremonium thermophilum (Voutilainen et al. 2008).
In the present study we investigated the cellulolytic

potential of isolates of 16 thermophilic fungi. The fungi
were selected from the three ascomycete orders Sordariales,
Eurotiales and Onygenales and from zygomycete order
Mucorales thus covering all orders which harbor thermo-
philic fungal species.
All 16 fungi were able to grow on crystalline cellulose

but their extracellular enzymes showed widely different
cellulolytic activities, pH optima and thermostabilities.
Furthermore, we used PCR with degenerate primers
to amplify and sequence gene fragments of 22 new
cellulases from these fungi. The phylogenetic relationship
of the enzymes showed a better correlation to the fungal
order than to the thermostability of the fungal cellulose-
degrading activity.

Materials and methods
Fungi and growth conditions
Fungi were purchased from Centraalbureau voor Schim-
melcultures, Utrecht, The Netherlands (Table 1). Unless
otherwise indicated, growth experiments on different
carbon sources were done essentially as described (Herr
1979). Briefly, the fungi were grown on minimal medium
with 1% glucose for 3 days. Next, 500 μl of this culture was
transferred to 5 ml of basal medium supplemented with
the indicated carbon source with or without 0.5% yeast
extract. The cultures were incubated with shaking (250
rpm) for the time indicated. The growth temperature was
45°C except for T. emersonii and Scytalidium thermo-
philum that were incubated at 37°C.
For DNA purification the fungi were grown on 6%

wheat bran (Finax, Esbjerg, Denmark), 1.5 % agar (Sigma-
Aldrich, Cambridge, UK) plates at the recommended
temperature.

Endoglucanase assay
Endoglucanase activity was measured with Azo-CM-Cellu-
lose (cat. S-ACMC, Megazyme, Bray, Ireland) as substrate
in an assay modified from the manufacturer’s protocol. A
culture broth sample of 20 μl was mixed with 20 μl of 2%
Azo-CM-Cellulose in 2× McIlvaine Buffer (McIlvaine
1921) at the desired pH. The culture broth sample was
incubated at the indicated time and temperature before
mixing with 100 μl of precipitant (300 mM Na acetate, 18
mM Zn acetate, 76% EtOH (pH 5)). The stopped reactions
were centrifuged 16,000 g for 1 minute and 100 μl of the
supernatant was dried down at 80°C and resuspended in
5 μl of water. Finally, the absorption at 600 nm was
measured and enzyme activity was calculated as described
(Megazyme, Bray, Ireland).

Filter paper assay
Degradation of filter paper was measured by first cutting
a 5 × 5 mm piece of filter paper #1 (Whatman, Kent, UK)
with a pair of sharp scissors whereafter it was submerged
in 80 μl of 1.25x McIlvaine Buffer (McIlvaine 1921) at the
desired pH. Next, 20 μl of sample was added and the assay
was incubated at the indicated time and temperature. The
filter paper was removed and 0.3 μl of Novozym 188
(Novozymes, Bagsvaerd, Denmark) was added and the
sample incubated for 30 minutes at 50°C to convert any
cellobiose to glucose. The reactions were centrifuged
16,000 g for 1 minute and the supernatant was dried down
at 80°C and resuspended in 5 μl of water. Finally, the



Table 1 List of fungi and growth on cellulose

Order Name CBS no.a Isolated from Growth
on Avicel

Abbreviation
used in figs.

Sordariales Chaetomium senegalense 728.84 Plant remains Poorb Chsene

Sordariales Chaetomium thermophilum 180.67 Typha, incubated strawand leaf mold Yes Chther

Sordariales Corynascus thermophilus 406.69 Mushroom compost Yes Cother

Sordariales Melanocarpus albomyces 638.94 Chicken nest straw Yes Malbo

Sordariales Remersonia thermophila 540.69 Mushroom compost During peak heating Yes Rether

Sordariales Scytalidium indonesiacum 259.81 Soil Yes Sindo

Sordariales Scytalidium thermophilum 620.91 Saw dust&wood chips In pighouse bedding Yes Sther

Onygenales Malbranchea cinnamomea 115.68 Oryza sativa (Gramineae) seeds Yes Mcinn

Eurotiales Talaromyces byssochlamydoides 151.75 Desert soil Poorb Tbyss

Eurotiales Talaromyces emersonii 393.64 Compost Yes Temer

Eurotiales Talaromyces leycettanus 398.68 Coal spoil tip soil + YEc Tleyc

Eurotiales Talaromyces thermophilus 236.58 Decaying Parthenium argentatum Yes Tther

Eurotiales Thermoascus aurantiacus 891.70 Wood + YEc Taura

Eurotiales Thermomyces lanuginosus 632.91 Rotting guayule shrub Yes Tlanu

Mucorales Rhizomucor miehei 182.67 Retting Parthenium argentatum Yes Rmie

Mucorales Thermomucor indicae-seudaticae 104.75 Municipal compost Yes Tindi
aStrain registration number at Centraalbureau voor Schimmelcultures.
bGood growth on avicel with 0.5% yeast extract.
cOnly growth on avicel with 0.5% yeast extract.

Table 2 Sequence of conserved peptides and PCR primers

Target Peptide Primer sequencea

GH6 LPDRDC CAGGTCCTICCIGAYMGIGAYTG

GH6 GWLGWP CAGGTCGGITGGCTIGGITGGC

GH6 GLATNV CAGGTCGGICTIGCIACIAAYGT

GH6 PAPEAG CAGGTCCCIGCYTCIGGIGCIGG

GH6 WFQAYF CAGGTCAARTAIGCYTGRAACCA

GH6 WVKPGG CTGGACCCICCIGGYTTIACCCA

GH6 GLATNV CAGGTCGGICTIGCIACIAAYGT

GH6 VVYDLP CTGGACGTIGTITAYGAYCTICC

GH7 DANWRW CTGGACGAYGCIAAYTGGMGITGG

GH7 EFTFDVD CTGGACGARTTYACITTYGAYGTIGA

GH7 GTGYCD CTGGACGGIACIGGITAYTGYGA

GH7 EMDIWEA CTGGACGCYTCCCADATRTCCATYTC

GH7 DGCDFN CTGGACTTRAARTCRCAICCRTC

GH7 VVTQF CTGGACAAYTGIGTIACIAC

GH45 YWDCCK CAGGTCTAYTGGGAYTGYTGYAA

GH45 PGGGVG CAGGTCCCIACICCICCICCIGG

GH45 WR(F/Y)(D/N)WF CAGGTCAACCARTTRTAICKCCA

GH45 WCCACY CTGGACTARCAIGCRCARCACCA

GH45 WCCACY CTGGACTGGTGYTGYGCITGYTA

GH45 WDCCKP CTGGACTGGGAYTGYTGYAARCC
aI = Inosine, Y = C and T, K = G and T, M = A and C, R = A and G.
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glucose content of the sample was measured with the
D-Glucose HK Assay Kit (Megazyme, Bray, Ireland).

DNA purification
Fungal mycelium was scraped of the top of a wheat bran
agar plate, frozen in N2(l) and ground with a mortar and
pestle. DNA was extracted from the homogenized myce-
lium with the Fungal DNA Mini Kit (Omega Bio-Tek,
Norcross, GA, USA) according to the manufacturer's
instructions.

RNA purification
Fungal mycelium was collected by filtration of liquid
cultures through Miracloth (Calbiochem, San Diego,
CA, USA) and RNA was purified with a Total RNA kit
(A&A Biotechnology, Gdynia, Poland) or with Tri Reagent
(Sigma-Aldrich, St. Louis, MO, USA).

Design of degenerated primers
For each of the glycoside hydrolase families 6 (GH6), 7
(GH7) and 45 (GH45) the most conserved hexapeptides
were found in thermophilic and thermotolerant fungal
enzymes available in GenBank. These hexapeptides were
reverse translated according to the genetic code. Positions
containing any nucleotide (A, C, G or T) were substituted
with inosine (Table 2). Degenerate nucleotides at the 3'
end of the primers were removed from the sequence of
the primers. Reverse primers were designed to be comple-
mentary to the DNA sequence encoding the hexapeptide.
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A tail of six bases (CTGGAC) was added to the 5' end
of all primer sequences as this improves the perform-
ance of short primers (Andersen et al. 2000; Balcells
et al. 2011; Chen et al. 2005).
The primers were synthesized and HPLC-purified by

Sigma-Aldrich (Cambridge, UK).

PCR with degenerated primers
A mix of 100 ng total fungal DNA in 1x Run PCR buffer,
2 mM each dATP, dCTP, dGTP and dTTP, 400 nM
forward primer; 400 nM reverse primer; 1U RUN DNA
polymerase (A&A Biotechnology, Gdynia, Poland) in a
total volume of 20 μl was used for PCR on an MyCycler
(Bio-Rad, Hercules, CA, USA) with the following thermal
profile:
Initial denaturation 95°C, 5 minutes.
30–40 cycles of 95°C, 20 seconds; annealing temperature,

30 seconds; 72°C, 60 seconds and a final extension at 72°C
5 minutes.
The number of cycles and the annealing temperature

was optimized for each primer set (Table 2).
PCR products were analyzed by agarose gel electro-

phoresis and selected DNA were cut out and purified
with the Qiaquick kit (Qiagen, Hilden, Germany).
One μl of the purified PCR product was reamplified in a

50 μl reaction under the same conditions as the original
PCR except that only 15 to 20 cycles of PCR were
performed.

RT-PCR and RACE
FirstChoice® RLM-RACE Kit (Invitrogen, Grand Island,
NY, USA) was used for cDNA synthesis and RACE
according to the manufacturer’s protocol.
For RT-PCR 1 μl of the RACE cDNA reaction was used

for PCR in a final volume of 20 μl containing 1x Run PCR
buffer, 2 mM each dATP, dCTP, dGTP and dTTP, 500 nM
forward primer; 500 nM reverse primer; 1U RUN DNA
polymerase (A&A Biotechnology, Gdynia, Poland) on
an MyCycler (Bio-Rad, Hercules, CA, USA) with the
following thermal profile:
Initial denaturation 95°C, 5 minutes.
30 cycles of 95°C, 30 seconds; 60°C, 30 seconds; 72°C,

60 seconds and a final extension at 72°C 5 minutes.
PCR products were analyzed by agarose gel electrophoresis.

Sequencing and analysis
PCR products were cycle sequenced by Eurofins-MWG
(Ebersberg, Germany) or StarSEQ (Mainz, Germany) with
one of the degenerated primers used for PCR.
The resulting sequences were translated to amino

acid sequence and used for BLAST search (Altschul
et al. 1997) against the non-redundant protein sequence
database at NCBI and inspected for conserved domains
(Marchler-Bauer et al. 2011) in the CDD database at
NCBI.
Sequence alignment was made with ClustalW (Larkin

et al. 2007) and adjusted manually. Phylogenetic trees were
made with MUSCLE, PhyML and TreeDyn at Phylogeny.fr
(Dereeper et al. 2008).

Statistical analysis
P-values were calculated by two-sided Student’s T-test or
by analysis of variance tests (ANOVA) unless indicated
otherwise.

Nucleotide sequence accession numbers
The DNA sequences of the product of PCR amplification
have been deposited in the European Nucleotide Archive
databases [EMBL:HG313865, HG313866, HG313868,
HG313869, HG313871 - HG313874, HG313876 -
HG313881 and HG313883 - HG313889].

Results
To characterize and compare the cellulolytic potential of
thermophilic fungi we chose one isolate of each of 16
(according to the provider) non-pathogenic, non-toxin-
producing thermophilic fungi.
A medium with microcrystalline cellulose as the only

carbon source was inoculated with each of the 16 fungal
strains to test their ability to grow on cellulose. All of
the fungi could grow on the microcrystalline cellulose.
However, Talaromyces leycettanus and T. aurantiacus
needed a supplement of 0.5% yeast extract for growth
(Table 1). Also Chaetomium senegalense and Talaromyces
byssochlamydoides grew better when the cellulose minimal
medium was supplemented with yeast extract.
To assess the cellulolytic potential of the fungi when

grown on microcrystalline cellulose samples of culture
medium were removed at various times and assayed
for endoglucanase activity. All of the fungi produced
measurable levels of endoglucanase activity except S.
thermophilum, T. byssochlamydoides and Talaromyces
thermophilus where no endoglucanase activity was de-
tectable in the medium (Figure 1) although these fungi
grew well on cellulose (Table 1).
Of the 13 fungi where endoglucanase activity was

detected the activity measured in the medium from T.
leycettanus was more than five times higher than from M.
albomyces (P < 0.001, Student’s T-test), which had the
second highest endoglucanase activity of the fungi used
in the present study (Figure 1).
The pH optimum of the endoglucanase activity of each

fungus was determined by performing the assay at different
pH values (Figure 2). Most of the fungal endoglucanases
had optimal activity at pH 4 – 6 but the highest activity of
the endoglucanase from Thermomucor indicae-seudaticae
was measured at pH 8.
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Figure 1 Secreted endoglucanase activity from 16 thermophilic
fungi grown on microcrystalline cellulose. Endoglucanase activity
of secreted fungal enzymes was measured as described in
“Methods”. The left y-axis indicates the scale for the upper panel
including endoglucanase activities from all the fungi and the right
y-axis indicates the scale for the lower panel. The endoglucanase
activity from T. leycettanus is truncated. Error bars indicate standard
deviations. See Table 1 for abbreviations of fungal names. The figure
represents the result of triple determination of the enzyme activity
for each culture in one growth experiment. The growth experiment
was repeated twice with similar results.
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The relatively broad pH optima measured for fungi like
C. senegalense and T. indicae-seudaticae indicate that
these fungi are able to degrade cellulose in environments
with different pH values (Figure 2). The broad pH
optimum may be due to one enzyme, which is active at
several pH values, or to different enzymes with different
pH optima. The only fungus among the species studied
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Figure 2 Optimal pH for the secreted endoglucanase activities. The cu
were brought to the pH indicated and the endoglucanase activity was me
endoglucanase activity. The experiment was repeated three times. The acti
standard deviations. See Table 1 for abbreviations of fungal names. Stars ne
than the highest activity (P < 0.05, Student’s T-test).
with highest activity at high pH value was the zygomycete
T. indicae-seudaticae.
To assess thermostability of the endoglucanase activity

the fungal extracts were incubated at 70°C for one hour
before activity measurement. The activity after incubation
at 50°C for one hour was used as reference. Thermostability
varied from practically 100% activity after incubation at
70°C for one hour for the zygomycete T. indicae-seudaticae
to almost complete loss of activity for the ascomycete
Thermomyces lanuginosus (Eurotiales, Figure 3).
To access the total cellulolytic potential of the secretome

from the 13 fungi with endoglucanase activity we measured
the activity of the culture supernatants in a filter paper
degradation assay. Degradation of filter paper requires the
combined activity of both endo- and exocellulases and is
often used as a measure of total cellulolytic potential
(Dashtban et al. 2010; Zhang et al. 2009).
The T. leycettanus secretome showed more than 50

times higher cellulolytic activity as measured in the filter
paper assay than the second most active secretome
(Figure 4, P = 0.003, Student’s T-test). Although only
23% of the activity remained after incubation at 70°C for
one hour this is still much higher cellulolytic potential
than the initial cellulolytic potential of any of the other
fungi (Figure 5, P = 0.03, Student’s T-test)).
The loss of cellulolytic potential of T. leycettanus at

70°C does not correlate with the high thermostability of
the endoglucanase activity of this fungus. This suggests that
one or more of the cellobiohydrolases, monooxygenases
or auxiliary enzymes that are involved in filter paper
degradation are heat labile.
For T. leycettanus and the 12 other fungi where the

endoglucanase activity was measurable this activity was
either higher than the filter paper degrading activity or the
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Figure 3 Heat stability of the secreted endoglucanase activities.
Aliquots of the culture supernatants from fungi grown on
microcrystalline cellulose were incubated for one hour at 70°C before
measuring the endoglucanase activity (see “Methods”). Activities are
given as percent remaining activity after one hour incubation at 70°C
compared to control samples incubated at 50°C. The experiment was
repeated three times. Error bars indicate standard deviations. Stars next
to bars indicate that the activity at this pH was significantly lower than
the highest activity (1 star: P < 0.05, 2 stars: P < 0.01, 3 stars: P < 0.001,
Student’s T-test). See Table 1 for abbreviations of fungal names.
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Figure 5 Heat stability of the secreted cellulolytic enzymes.
Aliquots of the culture supernatants from fungi grown on
microcrystalline cellulose were incubated for one hour at 70°C
before measuring the filter paper degrading activity (see “Methods”).
Activities are given as percent remaining activity after one hour
incubation at 70°C percent compared to control samples incubated
at 50°C. The experiment was repeated three times. Error bars
indicate standard deviations. Stars next to bars indicate that the
activity at this pH was significantly lower than the highest activity
(1 star: P < 0.05, 2 stars: P < 0.01, 3 stars: P < 0.001, Student’s T-test).
See Table 1 for abbreviations of fungal names.
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filter paper degrading was too low to detect (Figures 2 and
4, P < 0.001, Student’s T-test). This result suggests that the
release of cellulose polymers from an insoluble substrate
is rate limiting compared to the decomposition of the
released cellulose into oligomers. However, the data
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Figure 4 Cellulolytic potential of thermophilic fungi grown on
microcrystalline cellulose. Cellulolytic potential was measured as
filter paper degrading activity of secreted fungal enzymes as
described in “Methods” for the fungi that had endoglucanase
activity. The left y-axis indicates the scale for the upper panel
including filter paper degrading activities from all the fungi that and
the right y-axis indicates the scale for the lower panel. The filter
paper degrading activity from T. leycettanus is truncated. The figure
represents the result of triple determination of the enzyme activity
for each culture in one growth experiment. Symbols as in Figure 1.
See Table 1 for abbreviations of fungal names.
should be interpreted with care as it is difficult to compare
activities measured in different assays towards different
substrates.
To determine if the fungi have genes encoding

endoglucanases and cellobiohydrolases we designed
degenerated primers for PCR amplification of the GH45
endoglucanases and the GH6 and GH7 cellobiohydrolases.
With these primers it was possible to amplify and sequence
partial genes for six GH6, eight GH7 and eight GH45 from
the fungi. All sequences were submitted to the European
Nucleotide Archive database except for the GH7 from
Rhizomucor miehei that can be found in Additional file 1.
Expression of the genes was confirmed by RT-PCR of RNA
isolated from fungi cultivated on microcrystalline cellulose
medium (data not shown).
Together with the genes sequenced by others this

provides positive confirmation that GH6, GH7 and
GH45 are found in all three thermophilic orders of the
Ascomycota and GH7 and GH45 are present in the
Mucorales (Table 3). No GH6 were found in the two
fungi of the order Mucorales but it cannot be excluded
that T. indicae-seudaticae and R. miehei have genes
encoding GH6 enzymes but that these genes were not
amplified by the primers used in the present study.
Phylogenetic analysis did not reveal any correlation

between the thermostability and activity of the enzyme
activity and the protein sequences (Figure 6).



Table 3 Genes encoding GH6, GH7 and GH45 enzymes
sequenced in this study or found in GenBank

Fungus GH6 GH7 GH45

C. senegalense HG313865a HG313873a HG313881a

C. thermophilum AAY88915.1b AAW64926.1b EGS20050.1b

C. thermophilus HG313866a HG313874a HG313883a

M. albomyces CAH05671.1b CAD56667.1b CAD56665.1b

R. thermophila HG313871a HG313878a HG313886a

S. indonesiacum HG313872a HG313879a HG313887a

S. thermophilum BAB39154.1b BAA09785.1b BAA74956.1b

M. cinnamomea CAH05679.1b HG313889a HG313885a

T. byssochlamydoides HG313868a HG313876a NRc

T. emersonii AAL33604.4b AAL33603.2b CAJ75963.1b

T. leycettanus HG313869a HG313877a NRc

T. thermophilus NRc NRc NRc

T. aurantiacus NRc CAM98447.1b HG313884a

T. lanuginosus NRc ABR57319.1b NRc

R. miehei NRc This studya,d HG313888a

T. indicae-seudaticae NRc NRc HG313880a

aThis study.
bGenBank.
cNR: Not reported.
dToo short sequence for submission to the public databases but can be found
as Additional file 1.
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Discussion
In the present study we have assessed the cellulolytic
potential of isolates of 16 different thermophilic fungi
belonging to four orders by checking their growth on
microcrystalline cellulose and characterizing their secreted
cellulose-degrading enzymatic activities.
All of the fungal strains could grow on microcrystalline

cellulose and were therefore able to degrade cellulose. Two
of the fungi (T. leycettanus and T. aurantiacus) needed a
supplement of yeast extract for growth. Two observations
point to that the growth of these two fungi on cellulose was
not limited by access to carbon but rather by some other
factor that could be provided by the yeast extract. Firstly,
yeast extract contains 0.4 g carbon per g (Holwerda et al.
2012). Therefore, the total contribution of non-cellulose
carbon from the yeast extract is 0.2%, which will only allow
limited growth of the fungi. Secondly, T. aurantiacus only
grew poorly and T. leycettanus not at all on cellulose
medium when the medium was supplemented with easily
fermentable carbon in the form of 1% glucose (data not
shown). Therefore it was not the amount of available
carbon per se that was growth limiting. In support of
this notion, T. leycettanus was very capable of degrading
cellulose as the enzyme assays showed that it secreted by
far the highest amount of cellulases of all the fungi tested.
Interestingly, the M. albomyces strain, which was isolated

from chicken nest straw in Nevada, grew readily on the
cellulose medium in contrast to what was previously
reported for a strain of M. albomyces isolated from forest
soil and compost in India (Maheshwari and Kamalam
1985). This suggests that different isolates of M. albomyces
have different cellulolytic potential. Moreover, the M.
albomyces strain used in the present study was the fungus
with the second highest cellulolytic potential thereby
supporting the notion that this strain is able to degrade
cellulose in contrast to the previously characterized strain
(Maheshwari and Kamalam 1985).
This difference suggests that it is difficult to conclude

about growth preferences of a fungal species based on the
study of a single strain. It is tempting to speculate that the
original biotope of the strain used in the present study
had higher cellulose content than the biotope of the strain
used by Maheshwari and Kamalam (Maheshwari and
Kamalam 1985).
Likewise, T. lanuginosus is generally considered to

be unable to utilize cellulose as sole carbon source
(Maheshwari et al. 2000) in contrast to the observation
in the present study. However, different strains of T.
lanuginosus have different ability to grow on cellulose
(Markowska-Szczupak et al. 2012) in agreement with
that there can be large differences in the cellulolytic
potential of different isolates of the same species.
This notion is supported by the absence of detectable

endoglucanase activity from the strain of S. thermophilum
used in the present study whereas it has been reported that
other strains of S. thermophilum produce endoglucanase
and other cellulases when grown on recalcitrant poly-
saccharides (Hayashida and Mo 1986; Ögel et al. 2001;
Poças-Fonseca et al. 2000).
It is difficult to account for that some of the fungi e.g. S.

thermophilum could grow on cellulose without producing
any detectable endoglucanase activity. It cannot be
completely ruled out that the cellulose-degrading activity
is membrane associated but it is highly unlikely as no
endoglucanase activity was detected in the supernatant
from homogenized mycelium (data not shown). Fur-
thermore, it is quite unusual for fungal cellulases to be
membrane-anchored although it has been reported. One
example is a membrane-anchored endoglucanase that
was cloned from Phanerochaete chrysosporium (Vanden
Wymelenberg et al. 2002). Another possibility is that S.
thermophilum uses a different mechanism such as oxidative
processes to degrade the cellulose (Arantes et al. 2011;
Rineau et al. 2012). However, this fungus can express
cellulose-degrading activity (Ögel et al. 2001) and has
genes encoding endoglucanases (Takashima et al. 1999).
One purpose of the present study was to elucidate

whether it is possible to predict high thermostability
from fungal taxonomy. However, there was no obvious
correlation between the fungal orders and the thermo-
stability but at genus level the enzymes from the two



GH45

GH7

GH6

Figure 6 Phylogeny of sequenced genes encoding GH6, GH7 and GH45 family proteins from the thermophilic fungi. All the genes
sequenced in the present study except GH7 from R. miehei that was too short to produce any significant alignment and the genes found in NCBI
(see Table 3) were aligned with MUSCLE before curating the alignments with Gblocks and building of phylogenetic trees with PhyML (Dereeper et al.
2008). The three were depicted with TreeDyn. O: Onygenales; S: Sordariales; E: Eurotiales; M: Mucorales. See Table 1 for abbreviations of fungal names.
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species of Talaromyces with measurable endoglucanase
activity showed high thermostability. As the cellulolytic
potential of some of the isolates used in the present study
was different from the cellulolytic potential reported
for other isolates of the same species (Hayashida and
Mo 1986; Maheshwari et al. 2000; Maheshwari and
Kamalam 1985; Markowska-Szczupak et al. 2012; Ögel
et al. 2001; Poças-Fonseca et al. 2000) it is likely that
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the thermostability of enzymes may vary between isolates
of the same species. However, the high thermostability
observed for the enzyme activity from T. emersonii and
T. aurantiacus (both Eurotiales) is in agreement with
previous reports on these fungi (Gomes et al. 2000; Hong
et al. 2003; Khandke et al. 1989; McClendon et al. 2012;
Murray et al. 2004; Parry et al. 2002; Romanelli et al. 1975;
Voutilainen et al. 2010).
Just like the taxonomy, the predicted protein sequences

of the sequenced genes did not exhibit any correlation to
the thermostability of the cellulose-degrading activity.
Instead the protein sequences grouped largely according
to the taxonomic order with a few exceptions. E.g., the
GH45 sequences from Corynascus thermophilus did not
fall in the same branch of the phylogenetic tree as the other
GH45 from Sordariales. Moreover, the GH45 protein from
T. aurantiacus shows higher relationship to the protein
from M. albomyces from Sordariales than to the protein
for the other fungus of the Eurotiales order, T. emersonii.
Similar results were found for the DNA sequences of the
enzyme-encoding genes (Additional file 2).
One curious result was that no GH6 encoding genes

were found in the two fungi of the order Mucorales.
Although it is possible that these fungi have some GH6
genes that were simply not found in the present study, it
is interesting that another Zygomycota of the Mucorales
order, Rhizopus oryzae, is able to degrade cellulose despite
the absence of any GH6 gene in its genome (Battaglia
et al. 2011).
The high pH optimum of the cellulolytic activity

from T. indicae-seudaticae distinguished this fungus
from the other fungi. Also a purified glucoamylase from
T. indicae-seudaticae has a relatively high pH optimum
(Kumar and Satyanarayana 2003) suggesting that this
fungus may be adapted to growth in an environment
with high pH.
For six of the eight fungi where high activity was

measured in both assays the endoglucanase activity
was more heat stable than the filter paper degrading
activity (Figure 3 and 5, P = 0.012, Student’s T-test).
This is in agreement with that more enzymes including
endoglucanases are necessary for filter paper degradation
than for decomposition of carboxy-methyl cellulose
(reviewed by (Dashtban et al. 2010)). In view of this it
seems surprising that C. thermophilum exhibited more
stable filter paper degrading activity than endoglucanase
activity (Figures 3 and 5). This can be explained by the find-
ing that the endoglucanase activity of C. thermophilum
measured as μmoles of glucose released per hour was
almost 70 times higher than the filter paper degrading
activity. Therefore the endoglucanase activity was not rate
limiting for the total cellulolytic potential of the fungus.
In conclusion, the results of the present study show

that thermophilic fungi of all four orders from where
thermophilic species have been described, are able to
degrade cellulose. The main differences in cellulolytic
potential and thermostability of the secretome do not seem
to correlate to the fungal order.
Additional files

Additional file 1: Sequence of the GH7 gene fragment from R.
miehei. DNA sequence of the truncated GH7 gene that was amplified
and sequenced from R. miehei. The lower sequence is the amino acid
sequence of the fragment translated in the frame that resembles a GH7
family protein.

Additional file 2: Phylogenetic relationship of the DNA sequences
encoding enzymes belonging to the GH6, GH7 and GH45 families
from the thermophilic fungi.
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