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Abstract

remediation of contaminated soil and groundwater.

The contaminant concentrations over which type strains of the species Dehalogenimonas alkenigignens and
Dehalogenimonas lykanthroporepellens were able to reductively dechlorinate 1,2-dichloroethane (1,2-DCA),
1,2-dichloropropane (1,2-DCP), and 1,1,2-trichloroethane (1,1,2-TCA) were evaluated. Although initially isolated from
an environment with much lower halogenated solvent concentrations, D. alkenigignens 1P3-3" was found to
reductively dehalogenate chlorinated alkanes at concentrations comparable to D. lykanthroporepellens BL-DC-9'.
Both species dechlorinated 1,2-DCA, 1,2-DCP, and 1,1,2-TCA present at initial concentrations at least as high as 8.7,
4.0, and 3.5 mM, respectively. The ability of Dehalogenimonas spp. to carry out anaerobic reductive dechlorination
even in the presence of high concentrations of chlorinated aliphatic alkanes has important implications for

Keywords: Bioremediation, Chlorinated alkanes, Dehalogenimonas, Reductive dechlorination, Dehalogenation

Introduction

In industry, polychlorinated ethanes and propanes are
used as solvents, degreasing agents, and paint removers;
they are also globally produced on a massive scale as
intermediates during production of other industrially
important chemicals (De Wildeman and Verstraete,
2003; Field and Sierra-Alvarez, 2004). Due to spills and
past disposal methods, these chlorinated organic com-
pounds are prevalent groundwater and soil contami-
nants. For example, 1,2-dichloroethane (1,2-DCA) is
present in at least 570 current or former Superfund sites
(ATSDR 2001), and 1,2-dichloropropane (1,2-DCP) is
present at more than 100 Superfund sites (Fletcher et al.,
2009). The prevalence of these polychlorinated alkanes
as environmental contaminants is of concern because of
their known or suspected toxicity and/or carcinogenicity
(ATSDR, 2001; 1989).

* Correspondence: moemwil@lsu.edu

'Department of Civil and Environmental Engineering, Louisiana State
University, 3513B Patrick Taylor Hall, Baton Rouge, LA 70803, USA
Full list of author information is available at the end of the article

@ Springer

Anaerobic reductive dechlorination, a process in which
microorganisms utilize chlorinated organics as electron
acceptors, represents a potentially viable method for
cleanup of many contaminated sites (Christ et al., 2005;
Fennell et al., 2001; He et al., 2005; Major et al., 2002).
Previous studies on reductive dechlorination of haloge-
nated alkanes have generally been conducted in a rela-
tively narrow range of low (e.g, 0.1 to 0.5 mM)
contaminant concentrations (Chen et al, 1996; De
Wildeman et al., 2003; Fletcher et al,, 2009; Grostern
and Edwards, 2006, 2009; Lorah and Olsen, 1999;
Maymoé-Gatell et al., 1999; Yan et al,, 2009a). Contamin-
ant concentrations considerably higher than this range
are present at some sites, however, particularly in areas
where pollutants remain in the subsurface as dense non-
aqueous-phase liquids (DNAPLs) (Bowman et al., 2006;
Marzorati et al., 2007; Yan et al., 2009b).

Among the limited number of microbes known to an-
aerobically reductively dehalogenate polychlorinated
ethanes and propanes are strains of Dehalogenimonas
lykanthroporepellens (Moe et al., 2009; Yan et al., 2009a)
and Dehalogenimonas alkenigignens (Bowman et al,
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2012). These species cluster in the phylum Chloroflexi,
related to but distinct from organohalide respiring Deha-
lococcoides strains (Bowman et al,, 2012; Loffler et al.,
2012; Moe et al., 2009). Strains of both Dehalogenimonas
species reductively dehalogenate 1,2-DCA, 1,2-DCP, and
1,1,2-TCA via dichloroelimination reactions with H, as
an electron donor, forming final products of ethene, pro-
pene, and vinyl chloride, respectively (Bowman et al,
2012; Yan et al., 2009a).

Previously reported studies of Dehalogenimonas
strains were conducted only at initial chlorinated solvent
concentrations of 0.5 mM (Bowman et al, 2012; Yan
et al, 2009a). Research reported here was aimed at
evaluating the solvent concentration ranges over which
D. lykanthroporepellens and D. alkenigignens can reduc-
tively dechlorinate 1,2-DCA, 1,2-DCP, and 1,1,2-TCA in
order to assess their suitability for bioremediation of
high contaminant concentrations.

Materials and methods

Experiments were carried out in 25 mL glass serum bot-
tles (Wheaton) sealed with butyl rubber stoppers and
aluminum crimp caps. Each serum bottle contained 10
mL titanium-citrate reduced anaerobic basal medium
prepared as described by (Moe et al. 2009) except that 5
mM acetate was replaced with 0.05 mM each of acetate,
pyruvate, and lactate. The 15 mL gas headspace was
comprised of Hy/N, (80%/20%, v/v). Replicate serum
bottles were spiked with neat, filter sterilized 1,2-DCA
(>99.8% purity, Sigma Aldrich, St. Louis, MO), 1,2-DCP
(99%, Sigma Aldrich, St. Louis, MO), or 1,1,2-TCA (96%,
Sigma Aldrich, St. Louis, MO) to achieve target initial
aqueous phase concentrations ranging from 0.5 to 15
mM after dissolution and equilibration.

Each serum bottle received 0.3 mL inoculum (3% v/v)
of D. alkenigignens strain IP3-3"7 (=JCM 17062" =NRRL
B-59545") or D. lykanthroporepellens strain BL-DC-9*
(=JCM 15061" = ATCC BAA-1523") previously grown
on 1,2-DCP. Incubation was in the dark at 30°C without
shaking. Triplicate bottles were sacrificed at time zero
and after eight weeks incubation for analysis of chlori-
nated solvents and potential degradation products. To
account for potential abiotic reactions, triplicate negative
controls prepared in the same manner as inoculated bot-
tles but without bacterial addition were incubated under
identical conditions.

Chlorinated solvents and degradation products were
measured using an HP model 6890 gas chromatograph
(GC) equipped with a flame ionization detector and
GS-GasPro capillary column (60 m x 0.32 mm LD,
J&W P/N 113-4362) as described previously (Yan et al.,
2009a). Gas headspace samples collected in 100 pL gas-
tight glass syringes (Hamilton, Baton Rouge, LA) were
introduced to the GC via direct injection. Aqueous
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samples (500 pL) were introduced to the GC via a Tek-
mar 2016/3000 purge and trap autosampler and concen-
trator. Both gas-headspace and aqueous-phase aliquots
were analyzed for each sample bottle.

Hydrogen concentrations in the gas headspace were
measured using an SRI Instruments model 310 gas
chromatograph (Torrence, CA) equipped with a thermal
conductivity detector and molecular sieve column
(Alltech Molesieve 5A 80/100) as described previously
(van Ginkel et al., 2001).

Results

The quantity of the dechlorination product determined
at the end of the eight week incubation period as a func-
tion of initial aqueous-phase 1,2-DCA, 1,-DCP, and
1,1,2-TCA is shown in Figures 1, 2 and 3 respectively.

The production of ethene (Figure 1) coupled with
1,2-DCA disappearance in the inoculated bottles is con-
sistent with the 1,2-DCA dihaloelimination degradation
pathway reported previously for D. alkenigignens IP3-3"
and D. lykantroporepellens BL-DC-9" in tests conducted
with initial 1,2-DCA concentrations of 0.5 mM in serum
bottles containing H, at an initial concentration of 10%
v/v (as opposed to the 80% v/v employed in the present
study) (Bowman et al,, 2012; Yan et al., 2009a). Trace
levels of 1-chloroethane (<0.3 umol/bottle) were
detected at comparable levels in both inoculated bottles
and in uninoculated abiotic controls (data not shown)
and small amounts of ethene (<0.7 pmol/bottle) were
detected in abiotic negative controls (Figure 1) indicat-
ing that some abiotic 1,2-DCA transformation occurred
in the anaerobic medium employed here, but the
amount was negligible. The sum of parent compound
(i.e, 1,2-DCA) plus daughter product (i.e., ethene and
1-chloroethane) in replicate serum bottles inoculated
with the bacterial strains ranged from 74-107% of the
mass determined in abiotic negative controls (average
89%). Dechlorination was essentially complete (< 1% of
the starting 1,2-DCA remaining) at the end of the eight
week incubation period for serum bottles supplemented
with 1,2-DCA at initial concentrations less than
3.16 £0.05 mM and 1.48 +0.03 mM (mean * standard
deviation) for D. alkenigignens IP3-3" and D. lykanthro-
porepellens BL-DC-9", respectively (Figure 1). At higher
initial 1,2-DCA concentrations (at and to the right of
concentrations denoted by arrows in Figure 1), untrans-
formed 1,2-DCA remained at the end of the eight week
incubation in amounts increasing with increasing initial
1,2-DCA concentration.

The quantity of ethene observed increased with in-
creasing initial 1,2-DCA concentration in the range of
0.5 to approximately 4 mM (maximum ethene observed
in bottles containing initial 1,2-DCA concentrations of
4.03+0.09 and 4.08 £ 0.16 mM for D. alkenigignens IP3-
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Figure 1 Experimentally measured ethene production as a function of initial aqueous-phase 1,2-DCA concentration after eight-weeks
incubation of D. alkenigignens IP3-3" (left) and D. lykanthroporepellens BL-DC-9" (right). Filled symbols indicate average of replicate bottles
inoculated with bacterial strains. Open symbols indicate average of replicate uninoculated negative control bottles. Bars represent one standard
deviation. Arrows denote concentration at and above which >1% of the starting 1,2-DCA remained at the end of the incubation period.

3" and D. lykanthroporepellens BL-DC-9", respectively)
and then decreased at higher initial 1,2-DCA concentra-
tions. The decrease in ethene production as 1,2-DCA
concentrations increased indicates that sufficiently high
1,2-DCA concentrations can inhibit dechlorination ac-
tivity of both Dehalogenimonas spp. Biologically
mediated 1,2-DCA reductive dechlorination, however,
was observed in serum bottles with initial 1,2-DCA con-
centrations as high as 9.81 + 0.98 and 8.69 + 0.26 mM for
D. alkenigignens 1P3-3" and D. lykanthroporepellens BL-
DC-97, respectively. At higher initial 1,2-DCA concen-
trations, small amounts of ethene were also detected,
but in amounts that were not statistically different from
abiotic negative controls at a confidence level of 95%.
The production of propene (Figure 2) coupled with
1,2-DCP dechlorination in the inoculated bottles is

consistent with the previously reported tests conducted
with 0.5 mM 1,2-DCP in serum bottles with 10% v/v H,
in the gas headspace (Bowman et al., 2012; Yan et al,
2009a). Trace levels of 1-chloropropane (<0.03 pmol/
bottle) were detected in inoculated bottles and uninocu-
lated abiotic controls (data not shown), and propene was
detected in relatively minute quantities (<0.13 pmol/bot-
tle) in abiotic negative controls (Figure 2), indicating
small amounts of abiotic 1,2-DCP transformation. The
sum of parent chlorinated solvent (i.e., 1,2-DCP) and
daughter products (i.e., propene and 1-chloropropane)
in replicate bottles inoculated with the bacterial strains
ranged from 74-131% of the mass determined in abiotic
negative controls (average 95%). When provided with
1,2-DCP at initial aqueous-phase concentrations less
than 3.19 £ 0.20 mM and 2.14 + 0.12 mM, dechlorination
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Figure 2 Experimentally measured propene production as a function of initial aqueous-phase 1,2-DCP concentration after eight-weeks
incubation of D. alkenigignens IP3-3" (left) and D. lykanthroporepellens BL-DC-9" (right). Filled symbols indicate average of replicate bottles
inoculated with bacterial strains. Open symbols indicate average of replicate uninoculated negative control bottles. Bars represent one standard
deviation. Arrows denote concentration at and above which >1% of the starting 1,2-DCP remained at the end of the incubation period.

30

25 4 l Strain BL-DC-9

20 1
15

10

Propene (umol/bottle)

2 4 6 8 10 12 14 16
Initial aqueous-phase 1,2-DCP (mM)




Maness et al. AMB Express 2012, 2:54
http://www.amb-express.com/content/2/1/54

Page 4 of 7

w
o

l Strain IP3-37

N
(4]
1

N
o
1

Vinyl chloride (umol/bottle)

0 T T T T
0 2 4 6 8 10 12 14 16 18

Initial aqueous-phase 1,1,2-TCA (mM)

incubation period.

Figure 3 Experimentally measured vinyl chloride production as a function of initial aqueous-phase 1,1,2-TCA concentration after
eight-weeks incubation of D. alkenigignens 1P3-3" (left) and D. lykanthroporepellens BL-DC-9" (right). Filled symbols indicate average of
replicate bottles inoculated with bacterial strains. Open symbols indicate average of replicate uninoculated negative control bottles. Bars
represent one standard deviation. Arrows denote concentration at and above which >1% of the starting 1,1,2-TCA remained at the end of the
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of 1,2-DCP to a final product of propene was essentially
complete in bottles inoculated with D. alkenigignens
1P3-3" and D. lykanthroporepellens BL-DC-9", respect-
ively, with <1% of the starting 1,2-DCP remaining at the
end of the eight week incubation period (Figure 2). At
higher initial 1,2-DCP concentrations (denoted by
arrows in Figure 2), 1,2-DCP remained at the end of
eight weeks in amounts increasing with increasing initial
1,2-DCP concentration.

Similar to what was observed with 1,2-DCA, the quan-
tity of propene formed from 1,2-DCP dechlorination
increased at initial 1,2-DCP concentrations ranging from
0.5 to roughly 3 mM (maximum propene was observed
in bottles containing initial 1,2-DCP concentrations of
3.21 £0.46 and 3.08 + 0.05 mM for D. alkenigignens 1P3-
3" and D. lykanthroporepellens BL-DC-9", respectively)
and then decreased at higher initial 1,2-DCP concentra-
tions. This indicates that beyond a certain threshold, as
was observed with 1,2-DCA, 1,2-DCP became inhibitory
to dechlorination activity. Nevertheless, 1,2-DCP reduc-
tive dechlorination was observed in serum bottles with
initial 1,2-DCP concentrations as high as 5.05 £+ 0.29 and
4.02 +0.09 mM for D. alkenigignens IP3-3" and D. lykan-
throporepellens BL-DC-9", respectively. At higher initial
1,2-DCP concentrations, propene was also detected, but
in amounts that were not statistically different from abi-
otic negative controls at a 95% confidence level.

In contrast to the relatively high concentrations of 1,2-
DCP that were dechlorinated by Dehalogenimonas spp.
in the present study, (Loffler et al. 1997) reported that
1,2-DCP dechlorination by an undefined mixed culture
derived from Red Cedar Creek sediment (Michigan,
USA) was completely inhibited when 1,2-DCP was sup-
plied in amounts corresponding to an aqueous phase

concentration of roughly 0.9 mM or higher. D. alkeni-
gignens 1P3-3" and D. lykanthroporepellens BL-DC-9"
may be better suited to degradation of higher 1,2-DCP
concentrations than other microbial populations studied
previously.

Vinyl chloride production (Figure 3) coupled with
1,1,2-TCA dechlorination in the inoculated bottles is
consistent with the previously reported tests conducted
with 0.5 mM 1,1,2-TCA in serum bottles with 10% v/v
H, in the gas headspace (Bowman et al,, 2012; Yan et al,,
2009a). Low levels of 1,2-DCA (< 1.5 umol/bottle) were
observed in both inoculated bottles and uninoculated
negative controls (data not shown), and small quantities
vinyl chloride (<1 pmol/bottle) were observed in abiotic
negative controls (Figure 3), indicating some abiotic
1,1,2-TCA transformation but in comparatively small
amounts. The sum of the parent solvent (i.e., 1,1,2-TCA)
and the daughter products (ie, 1,2-DCA and vinyl
chloride) in replicate bottles inoculated with the bacter-
ial strains ranged from 74-146% of the mass determined
in abiotic negative controls (average 99%). Dechlorina-
tion was essentially complete (<1% 1,1,2-TCA remaining)
after 8 weeks incubation when D. alkenigignens 1P3-3"
and D. lykanthroporepellens BL-DC-9' were supplied
with initial 1,1,2-TCA aqueous-phase concentrations be-
low 2.42+0.22 mM and 1.65+0.03 mM, respectively
(Figure 3). At higher initial concentrations, untrans-
formed 1,1,2-TCA remained at the end of the incubation
period.

Similar to what was observed with 1,2-DCA and 1,2-
DCP, the quantity of vinyl chloride formed from 1,1,2-
TCA dechlorination increased at initial 1,1,2-TCA
concentrations ranging from 0.5 to roughly 2 mM and
then decreased at higher initial 1,1,2-TCA concentrations
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(Figure 3). Maximum vinyl chloride concentrations
were observed in bottles containing initial 1,1,2-TCA
concentrations of 1.82+0.18 and 1.65+0.03 mM for
D. alkenigignens 1P3-3" and D. lykanthroporepellens
BL-DC-9", respectively. This indicates that beyond a
certain threshold, as was observed with 1,2-DCA and
1,2-DCP, 1,1,2-TCA became inhibitory to dechlorination
activity. Nevertheless, biologically mediated 1,1,2-TCA
reductive dechlorination was observed in serum bottles
with initial 1,1,2-TCA concentrations as high as
3.49 £ 0.31 and 3.80+0.42 mM for D. alkenigignens 1P3-
3" and D. lykanthroporepellens BL-DC-9", respectively.
At higher initial 1,1,2-TCA concentrations, small
amounts of vinyl chloride were also detected, but in
amounts that were not statistically different from abiotic
negative controls at a confidence level of 95%.

Hydrogen (H,) remained at relatively high concentra-
tions (>62%, v/v) in the gas headspace at the end of the
eight-week incubation period for all chlorinated solvent
concentrations tested for both strains, indicating that it
was not stoichiometrically limiting.

Discussion
As a basis for comparing the concentrations tested here
relative to saturation concentrations, solubility in water
at 20°C is 86.1 mM for 1,2-DCA (Horvath et al., 1999),
23.9 mM for 1,2-DCP (Horvath et al,, 1999), and 32.9
mM for 1,1,2-TCA (ATSDR 1989). Also as a basis for
comparison, groundwater in the well from which D.
lykanthroporepellens BL-DC-9' was isolated had 1,2-
DCA, 1,2-DCP, and 1,1,2-TCA concentrations that
averaged 5.5 mM, 0.6 mM, and 2.8 mM, respectively
(Bowman et al., 2006; Yan et al., 2009a). Results deter-
mined here indicate that both D. alkenigignens 1P3-3"
and D. lykanthroporepellens BL-DC-9' can reductively
dehalogenate 1,2-DCA, 1,2-DCP, and 1,1,2-TCA at con-
centrations comparable to those present in the DNAPL
source zone area of the Brooklawn area of the PPI site.
D. alkenigignens IP3-3" was isolated from groundwater
contaminated with 1,2-DCA, 1,2-DCP, and 1,1,2-TCA at
concentrations of 0.023 mM, 0.021 mM, and 0.010 mM,
respectively (Bowman et al., 2012). Although initially iso-
lated from an environment with much lower chlorinated
solvent concentrations than D. Ilykanthroporepellens
BL-DC-9", results from the present study demonstrate
that D. alkenigignens IP3-3" can reductively dechlorinate
1,2-DCA, 1,2-DCP, and 1,1,2-TCA at concentrations
comparable to D. lykanthroporepellens BL-DC-9".
Although reports of pure cultures’ abilities to dehalo-
genate high concentrations of chlorinated alkanes are
generally lacking in the literature, Marzorati et al. (2007)
reported an enrichment culture referred to as 6VS (ori-
ginating from groundwater in Italy where there was 1,2-
DCA contamination for more than 30 years) that
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repeatedly dechlorinated 8 mM 1,2-DCA. Also, Grostern
and Edwards (2009) described an enrichment culture, in-
cluding Dehalobacter sp. and an Acetobacterium sp.,
capable of dechlorinating 2 mM 1,2-DCA. Though not
previously evaluated for chlorinated ethanes or pro-
panes, previous research on chlorinated ethenes has
shown that microbial populations reductively dechlori-
nating chlorinated aliphatic alkenes, particularly per-
chloroethene (PCE) and trichloroethene (TCE) can
maintain their activity and increase contaminant dissol-
ution rates (Cope and Hughes, 2001; Dennis et al., 2003;
Sleep et al., 2006; Yang and McCarty 2002).

The toxicity of solvents to microorganisms has been
previously correlated to hydrophobicity as measured by
the log of octanol/water partition coefficients, log K,
(Sikkema et al., 1995). Compounds with log K, in the
range of 1.5 to 4 are generally toxic to microorganisms,
with maximum toxicity exhibited by compounds with
log K, between 2 and 4 (Bowman et al., 2009; Inoue
and Horikoshi, 1991; Kieboom and de Bont, 2000; Sik-
kema et al, 1994; Sikkema et al., 1995). The adverse
effects of 1,2-DCA, 1,2-DCP, and 1,1,2-TCA on reduc-
tive dechlorination by the bacterial strains tested here
are consistent with these previous observations. For
equal molar concentrations, 1,1,2-TCA [log K, 2.47,
(Alvarez and Illman, 2006)] was more inhibitory than
1,2-DCP [log K., 2.0, (Alvarez and Illman, 2006)] which
had a larger adverse effect than 1,2-DCA [log K, 1.48,
(Alvarez and Illman, 2006)].

The ability of Dehalogenimonas spp. to reductively
dechlorinate high concentrations of halogenated alkanes
has important implications for cleanup of contaminated
soil and groundwater. Abiotic transformation of these
chemicals in the environment is generally quite slow.
For example, the environmental half-life of 1,2-DCA
from abiotic transformation in water was estimated to
be 50 years (Vogel et al, 1987). Unlike chlorinated
ethenes (e.g., tetrachloroethene and trichloroethene),
several of the polychlorinated ethanes and propanes, 1,2-
DCA in particular, are resistant to transformation by
zero-valent iron (Sarathy et al., 2010; Song and Carr-
away, 2005), limiting physicochemical remediation
approaches for cleanup. The fact that Dehalogenimonas
spp. are able to perform reductive dechlorination even
in the presence of high concentrations of chlorinated
compounds suggests that they may provide an important
role in bioremediation.
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