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Abstract

Bacillus subtilis codes for two putative sortases, YhcS and YwpE, and two surface proteins, YhcR and YfkN, harboring
sorting motifs supposed to be recognized by the putative sortase(s). However, there is no experimental evidence
to show a direct link between these sortases and sorting sequences. To study the role of these two putative
sortases on displaying YhcR and YfkN on the cell wall, expression of yhcS and ywpE was analyzed by transcriptional
fusions and by Northern blot. It turned out that yhcS gene is expressed at a higher level during the late stationary
phase from both experiments, while ywpE expression is not confirmed in the Northern blot analysis. Next, we
constructed yhcS and ywpE single and double knockout strains and plasmids that express one or both genes to
restore the functions of the knockout strains. It could be shown that display of YhcR and YfkN on the surface
depended on the presence of YhcS while YwpE seems not to play a major role if any as a sortase. Finally, the
putative sorting motif together with a 123-amino-acid spacer derived from YhcR and YfkN designated YhcR123 and
YfkN123, respectively, were fused to an a.-amylase reporter enzyme. The fusion protein YhcR123-AmyQ could be
displayed on the surface at high amounts, while YfkN123-AmyQ could be hardly detected. We conclude that the
sortase YhcS can recognize and anchor YhcR on the cell wall. This result further indicates that the YhcR sorting
sequence can be used to display recombinant proteins on the surface of B. subtilis cells.
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Introduction

Cell surface display of recombinant proteins is usually
achieved through a translational fusion of the target
protein to one of the naturally occurring surface pro-
teins of the host cell. Display of proteins on the surface
of microorganisms, enabled by means of recombinant
DNA technology, has become an increasingly used strat-
egy in various applications in microbiology, biotechnol-
ogy and vaccination (Samuelson et al. 2002; Wernerus
and Stahl 2004; Daugherty 2007).

From a practical point of view, Gram-positive bacteria
have certain properties that potentially make them more
suitable for bacterial surface display applications. First,
the surface proteins of Gram-positive bacteria seem to
be more permissive for the insertion of extended
sequences of foreign proteins that have several hundreds
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of amino acids, as compared with the different Gram-
negative surface proteins (Samuelson et al. 2002). Sec-
ond, a more obvious advantage of the Gram-positive
system is that translocation through only a single mem-
brane is required to achieve proper surface exposure of
the heterologous polypeptide, while in the Gram-nega-
tive system both translocation through the cytoplasmic
membrane and correct integration into the outer mem-
brane are required for surface display. Finally, consider-
ing the practical handling of the bacteria, Gram-positive
bacteria have the additional advantage of being more
rigid, due to the thicker cell wall (Pagan et al. 1999;
Samuelson et al. 2002), which thus allows various
laboratory procedures without extensive cell lysis (Des-
vaux et al. 2006).

In Gram-positive bacteria, a class of surface proteins
are covalently anchored on the cell wall by a transpepti-
dase, which has been called sortase (Srt) (Paterson and
Mitchell 2004; Ton-That et al. 2004; Marraffini et al.
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2006; Clancy et al. 2010). Sortases are positioned at the
cytoplasmic membrane via a membrane anchor located
either at the N- or C-terminus, contain the active site,
LxTC motif (conserved residues underlined) (Marraffini
et al. 2006), of which cystein is essential for the sortase
activity (Ton-That et al. 1999); and recognize their sub-
strate proteins via a common C-terminal pentapeptide
sequence, which acts as a cell wall sorting signal. Sub-
strate proteins are not directly transferred to the cell
wall, but to the peptidoglycan intermediate lipid II. So
far, more than 700 putative sortase substrates encoded
by more than 50 different prokaryotic genomes have
been identified. The majority of these proteins are
anchored by a sortase named SrtA originally identified
in Staphylococcus aureus (Mazmanian et al. 1999). The
number and types of proteins anchored by SrtA are pre-
dicted to vary from two in B. subtilis to up to 43 in Lis-
teria monocytogenes (Boekhorst et al. 2005). These
proteins are recognized in most cases by the pentapep-
tide sorting signal LPXTG (Fischetti et al. 1990).

Two putative sortase homologues of B. subtilis are
YhcS and YwpE (Comfort and Clubb 2004; Pallen et al.
2001). YhcS encodes a protein of 198 amino acids carry-
ing a transmembrane anchor at its N-terminus and the
active site motif (LxTC). YwpE encodes a small protein
of 102 amino acids with the LxTC motif at the C-termi-
nus, but it has no signal peptide at the N-terminus
(Clancy et al. 2010; Tjalsma et al. 2000). YhcS has been
classified in group SrtD sortases, but there is no clear
experimental evidence that class SrtD sortases recognize
and anchor proteins on the surface of Gram-positive
bacteria (Dramsi et al. 2005).

B. subtilis also encodes two potential sortase sub-
strates, YfkN and YhcR, encoded by the yfkN and yhcR
genes (Boekhorst et al. 2005; Comfort and Clubb 2004).
Instead of the LPXTG motif, YfkN contains the poten-
tial sorting signal LPDTA and YhcR the sequence
LPDTS. YfkN exhibits 2’, 3’ cyclic nucleotide phospho-
diesterase and 2’ (or 3’) nucleotidase and 5’ nucleotidase
activities, a trifunctional nucleotide phosphoesterase
(Chambert et al. 2003). YhcR appears to have 5-nucleo-
tidase activity, a property shared by LPXTG proteins
from several other bacteria (Pallen et al. 2001). Its N-
terminal end (residues 1 to 46) contains a signal peptide
that is predicted to direct secretion by the twin-arginine
translocation pathway, while the C-terminal end is a
typical Gram-positive anchor (Oussenko et al. 2004).
Furthermore, yhcR is located adjacent to yhcS on the B.
subtilis chromosome, one of the two sortase-like pro-
teins in B. subtilis. In addition, recent analysis has
shown that YfkN and YhcR could accumulate in the
culture medium when investigated in B. subtilis cells
carrying null alleles in ykcS and ywpE. Therefore, YkN
and YhcR could, in principle, be sorted to the cell wall
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by the B. subtilis sortase homologues YwpE and/or
YhcS (Westers 2004).

Despite being intensively studied as a model organism
and possessing two sortase-like proteins, there is no
direct published evidence that B. subtilis might decorate
its surface with sortase-dependent proteins covalently
linked to the peptidoglycan. In an effort to develop B.
subtilis as a cellular chip, we have already established a
system to immobilize proteins on the surface of a B.
subtilis strain expressing L. monocytogenes srtA (Nguyen
and Schumann 2006). This work aims to analyze expres-
sion of the two putative sortases, YwpE and YhcS, and
the two surface proteins, YhcR and YfkN, in order to
extend tools to display proteins on the surface of any B.
subtilis wild type strain using its own sortase(s).

Materials and methods

Bacterial strains and culture conditions

The bacterial strains and plasmids used are listed in
Table 1. E. coli strain DH10B (Stratagene) was used as
recipient in all cloning experiments. The B. subtilis
strain 1012 was used for the construction of new strains
and as a template for PCR if not mentioned otherwise.
Cells were routinely grown aerobically in Luria-Bertani
(LB) broth at 37°C, and antibiotics were added as appro-
priate (ampicillin at 100 pg/ml, chloramphenicol at 10
pg/ml, erythromycin at 1 or 100 pg/ml, and neomycin
at 10 pg/ml).

Construction of strains NDH20 and NDH21

To measure expression of the yhcS and ywpE genes,
transcriptional fusions between their promoter regions
and the lacZ reporter gene were constructed. The 5’
coding region of yhcS including the start codon was
amplified using the primers ON59 and ON60 (Table 2),
treated with EcoRI and BamHI and ligated into the inte-
gration vector pMUTIN4 (Vagner et al. 1998), cleaved
with the same enzymes resulting in pNDH26. In a sec-
ond experiment, the complete ywpE gene including its
start codon was amplified using the ON61/ON62 primer
pair and inserted into pMUTIN4 yielding pNDH27.
Both plasmids were transformed into B. subtilis 1012
resulting in the strains NDH20 and NDH21, respectively
(Figure 1). Correct integration at the yhcS locus was
confirmed by PCR using ON57 and ON63 and at the
ywpE locus using ON55 and ON63 (Figure 1A). These
PCR products were verified by sequencing using ON63.
One correct transformant each was kept for further
studies.

Construction of strains SZ59, SZ60, NDH30, NDH31 and
NDH32

To inactivate the genes coding for the two putative sor-
tases, their coding sequences were replaced by two
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Table 1 Bacterial strains and plasmids used
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B. subtilis Description Reference

1012 leuA8 metB5 trpC2 hsdRM1 (Saito et al. 1979)
NDHO03 WWO02 with srtA gene of Listeria monocytogenes integrated at the lacA locus (Nguyen and Schumann 2006)
NDH20 1012 carrying pNDH26 inserted into the chromosome This work

NDH21 1012 carrying pNDH27 inserted into the chromosome This work
NDH30 1012 yhcS = neo (Neo®) This work

NDH31 1012 yhcS = neo, ywpE : erm (Neo”, Erm"®) This work
NDH32 WB800 yhcs:: neo, ywpEzerm (Neo, Erm® Cm") This work

SZ59 1012 yhcS = cat (Cm") This work

SZ60 1012 ywpE = erm (Em") This work
WB800 nprE aprE epr bpr mpr =2 ble nprB :: bsr Avpr wprA = hyg (Cm") (Wu et al. 2002)
WB80ON WBB800 pB-cat5-neo-cat3 (Neo® This work
Plasmids

pBluescript Il KS Stratagene

pMUTIN4 Integration vector carrying lacZ and erm (Vagner et al. 1998)

pNDH19 PxylA-amyQ-fnbpB123 (Nguyen and Schumann 2006)

pNDH26 pMUTIN4 carrying 5" end of yhcS This work

pNDH27 pMUTIN4 carrying 5" end of ywpE This work

pNDH33 Expression vector carrying Pgrac and Cm (Phan et al. 2006)

pNDH33-yhcS pNDH33 carrying yhcS (Pgrac-yhcS) This work

pNDH33-ywpE pNDH33 carrying ywpE (Pgrac-ywpk) This work

pNDH33-ywpE-yhcS pNDH33 carrying ywpE-yhcS This work
(Pgrac-ywpE-yhcS)

pNDH37 Pgrac with signal sequence of amyQ (Phan et al. 2006)

pNDH37-amyQ Pgrac with full length of amyQ (Phan et al. 2006)

pNDH88 pHTO1 with amyQ This work

pNDH89 yhcR123 translationally fused to amyQ This work

pNDH90 yfkN123 translationally fused to amyQ This work

pHTO1 Expression vector carrying Pgrac and Cm (Nguyen et al. 2007)

different antibiotic resistance markers. To obtain this
goal, yhcS was replaced by a chloramphenicol resistance
marker resulting in strain SZ59 (yhcS::cat) and ywpE by
an erythromycin resistance marker (SZ60: ywpE::erm) as
shown in Figure 2A and 2B. To be able to use these
knockout strains with plasmids that carry a chlorampheni-
col resistance gene, the cat cassette in strain SZ59 was
replaced by a neo cassette. First, the cat5-neo-cat3 cassette
was cloned into plasmid pBluescript II KS resulting in
plasmid pB-cat5-neo-cat3. This plasmid was treated with
Pyull and then transformed into strain SZ59, neomycin-
resistant colonies were screened for chloramphenicol sen-
sitivity, and correct integration at the cat cassette was con-
firmed by PCR using ON57 and ON58 (data not shown),
and one transformant was kept for further studies
(NDH30). Second, chromosomal DNA of strain SZ60 was
transformed into the strain NDH30; recombinants were
selected on LB plates containing erythromycin and neo-
mycin. Correct integration at the ywpE locus was con-
firmed by PCR using ON54 and ON55, resulting in strain

NDH31. Strain NDH32 was generated by transformation
of chromosomal DNA of NDH31 into WB800, followed
by selection for chloramphenicol, neomycin and erythro-
mycin resistance (strain NDH32).

Construction of B. subtilis strain WB80ON

WB800 (Wu et al. 2002) is an eight-fold protease-defi-
cient B. subtilis strain that is used for the production of
secreted heterologous proteins. This strain is resistant to
chloramphenicol. To be able to use it with plasmid
pNDH33 derivatives all carrying a chloramphenicol
resistance gene (Phan et al. 2006), a neo cassette was
inserted in the middle of cat cassette resulting in strain
WB80ON. The Pvull-treated plasmid pB-cat5-neo-cat3
was transformed into WB800 and plated on indicator
medium, calcium caseinate plates with neomycin. Colo-
nies without halos (as compared with strain 1012) were
checked for sensitivity to chloramphenicol and resis-
tance to neomycin. One transformant was kept for
further study (WB8OON).



Nguyen et al. AMB Express 2011, 1:22
http://www.amb-express.com/content/1/1/22

Table 2 Oligonucleotides used
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Name Sequence (5’ to 3')

ON29 GGCCATGGATCCATGATTCAAAAACGAAAGCGGACAG

ON42 GGCCATGACGTCTTTCTGAACATAAATGGAGACGGAC

ON47 GGCCATGACGTCTTGGAAGCGACAGTTGAGTACG

ON48 GAATAAGATATCTCACGTTCTGGAGGCGCTCCT

ON49 GGCCATGACGTCCGCATGTTTGATATTGAAGAAGC

ON50 AGCAGCGATATCTTATGCCTGATTCGCTCTATICTG

ON54 GGCCATTTCGAAGACCTCTTTAGCTCCTTGGAAGC

ON55 GACCTGAATGTGGAACGAGTGGAC

ON56 GGCCATTTCGAACCGACTGTAAAAAGTACAGTCGGCA

ON57 CGTCTTGATCAGGATACATCTGGC

ON58 GAGAGCCATAAACACCAATAGCCTT

ON59 GGCCATGAATTCAAAGGAGGAACTCCAGAACGTGAAAAAAGTTATTC
ON60 CTAATACGACTCACTATAGGGAGAGGATCCCGACACCTTTTTCTAAATCA
ONe61 GGCCATGAATTCAAAGGAGGAACAACAATGCGCCGGGATCA
ON62 CTAATACGACTCACTATAGGGAGAGGATCCTCTTCGTGCTTCACTCTTGC
ONe63 TCTACATCCAGAACAACCTCTGC

ON64 GGCCATAGATCTATGCGCCGGGATCAAAAAATG

ON65 GGCCATAGATCTATGAAAAAAGTTATTCCACTATTCATCATTGC
ON66 GGCCATAGATCTAGAATGAAGAAAAGCCGCAGGCACT

ON67 CCAGAGATCTCAAAGGAGGAACTCCAGAACGTGAAAAAAGTTATTC
ON68 AGTAAAGTTATCGGAATCGACTTAG

ON69 CTAATACGACTCACTATAGGGAGAAAAGTATGCAGGAACTGTGAT

Description
5" end of amyQ
3" end of amyQ
5" end of yhcR
3" end of yhcR
5" end of yfkN
3" end of yfkN
3" end of erm
5" end of ywpF

3" end of cat
5" end of yhcT

5" end of neo
5" end of yhcS
3" end of yhcS
5" end of ywpE
3" end of ywpkE
5" end of Pspac
5" end of ywpE
5" end of yhcS
3" end of yhcS
5" end of yhcS
5" end of dnak
3" end of dnak

Restriction sites used for cloning are underlined.

Construction of plasmids able to overexpress the two
putative sortases separately and together

To be able to overexpress yhcS and/or ywpE in B. subti-
lis under the control of the IPTG-inducible promoter
Pgrac (Phan et al. 2006), three different plasmids were
constructed. First, the coding sequence of the ywpE
gene including its start codon was amplified by PCR
using ON64 and ON62, the amplicon was cleaved with
BamHI and Bgl/ll and ligated into pNDH33 (Phan et al.
2006) at its unique BamHI site resulting in pNDH33-
ywpE. The ywpE gene was transcriptionally fused to
Pgrac and a strong ribosome-binding site (RBS) present
on pNDH33. Next, gene yhcS was amplified using ON65
and ON67 containing its own RBS; the PCR product
was then cleaved with Bg/II and ligated into pNDH33-
ywpE resulting in pNDH33-ywpE-yhcS. The gene yhcS
was also amplified using ON65 and ON66, the amplicon
was treated with Bg/II and ligated into pNDH33 at its
unique BamHI site resulting in pNDH33-yhcS.

Construction of plasmids pNDH88, pNDH89 and pNDH90
In order to study whether the putative B. subtilis sor-
tases could recognize potential sorting sequences, two
plasmids that allow anchoring of amyQ coding for an o.-
amylase (Palva 1982) on the cell wall were constructed.
In a previous report, it has been suggested that a 123-
amino-acids spacer between AmyQ and the sorting

sequence is optimal to anchor AmyQ on the cell wall
(Nguyen and Schumann 2006). Therefore, plasmids
were generated, in which amyQ was translationally
fused to the putative sorting sequences with the 123-
amino-acids spacers encoded by yicR (YhcR123) and
yfkN (YfkN123) under the control of the IPTG-inducible
promoter Pgrac. First, the amyQ gene was generated by
PCR using pKTHI10 (Palva 1982) as template together
with ON29 and ON42, the amplicon was treated with
BamHI and Aatll and ligated into pHTO1 (Nguyen et al.
2007) cut with the same enzymes resulting in pNDH88.
Next, the coding regions of the 3’ ends of yhcR and
yfkN including the sorting motif and the additional 123
codons, the spacer regions, were amplified using ON47/
ON48 and ON49/0ON50, respectively. The amplicons
were cleaved with Aatll and EcoRV and inserted into
pNDHS88 treated with Aatll and Smal resulting in
pNHD89 and pNDH90, respectively.

Determination of sortase-dependent cell wall proteins

The B. subtilis strains were inoculated to an ODs57g of
0.05 - 0.08 in LB medium and grown at 37°C in a shak-
ing water bath. After 1 h of growth, 0.1 mM IPTG was
added to induce expression of yhcS and/or ywpE and
cells corresponding to 200 ODs-g units were collected
after about 8 h. After sedimentation by centrifugation,
the cells were resuspended in 1.5 ml of water (final
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Figure 1 Transcriptional fusion of the lacZ reporter gene to the yhcS and ywpE promoters. (A) Schematic representation of transcriptional
fusions between the promoters of yhcS and ywpE and the lacZ reporter gene. (B) Cells containing the fusions were grown in LB medium at 37°
C, and aliquots were taken at the time points indicated for determination of the ODs7g and for measuring the B-galactosidase activity. Strains
NDH20 (black square” and closed bars) and NDH21 (‘white triangle’ and open bars).

volume) containing a cocktail of protease inhibitors
(Roche Diagnostics), 2 mM EDTA and 100 mg/ml
DNase I and disrupted by sonication (12 W, 10 x 30
pulses with 30 sec intervals) on ice. The unbroken cells
were removed by low-speed centrifugation (980 x g) at
4°C for 10 min. The supernatants were then centrifuged
at higher speed (21 000 x g) at 4°C for 15 min to obtain
a pellet containing the envelope material. These pellets
were washed three times in water containing protease
inhibitors. Finally, the pellets containing peptidoglycan
with cell wall proteins were resuspended in 100 ul of
lysozyme (1 mg/ml), incubated at 37°C for 45 min and
shaken occasionally. Samples were mixed with 3 x load-
ing buffer and applied to SDS-PAGE (Figure 3). The tar-
get protein bands were extracted from the gel, and
proteins were identified by MALDI-TOF mass
spectrometry.

Enzyme assays

B. subtilis strains NDH20 and NDH21 (Figure 1A) con-
taining the transcriptional fusions PyhcS-lacZ and
PywpE-lacZ were grown in LB medium at 37°C. When

an OD578 of 0.6 was reached (set as t = 0) and samples
were collected at the indicated time points. $-Galactosi-
dase activity assays were performed in triplicate with
soluble extracts using o.-nitrophenyl-f-D-galactoside as
substrate (Miller 1972) and yielded comparable results.
The activities of one representative experiment are pre-
sented. B-Galactosidase activities are given in units,
where one unit is defined as AA,ps min™ x ODgyg™" x
1073, in which ODsg is the optical density of the growth
culture.

To measure a-amylase activity, the B. subtilis strains
1012/pNDH37, 1012/pNDH37-amyQ, NDH30/pNDHS9,
NDHO03/pNDH19 and 1012/pNDHS89, three different
clones for each strain were grown in LB medium con-
taining chloramphenicol (10 pug/ml) at 37°C. When the
ODsy5 of the cultures reached to mid-log phase (ODsyg
0.6), 0.5 mM IPTG and 0.5% xylose were added to all
cultures to induce production of sortase A in the
NDHO3 strains, amylase (AmyQ, from pNDH37-amyQ)
and the hybrids AmyQ-FnbpB123 (from pNDH19) and
AmyQ-YhcR123 (pNDH89). Cells were separated from
the growth medium by centrifugation, washed twice
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Figure 2 Expression of yhcS and/or ywpE in strain NDH31 (AyhcS and AywpE) from plasmids by Northern blot. (A, B) Schematic
representation of chromosomal regions of the knockout strains SZ59, SZ60 and NDH30. The positions of ONs used for verification of the null
alleles by PCR are indicated. Three pairs of primers have been used: ON54 and ON55 specifically recognize chromosomal DNA of strain SZ60
(1617-bp PCR product), ON56 and ON57 strain SZ59 (1486-bp PCR product) and ON57 and ON58 strain NDH30 (1602-bp PCR product). (C)
Expression of yhcS and/or ywpE in strain NDH31 with different plasmids (pNDH33, pNDH33-yhcS, pNDH33-ywpE and pNDH33-ywpE-yhcS. Either a
total of 0.25 ug (lanes 4, 6 and 8) or 5 pg of RNA (lanes 1, 2, 3, 5, 7) were loaded per lane. RNA markers are indicated on the right margin.
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Figure 3 Protein patterns of the putative sortase knockout strains. Samples were collected 8 h after induction. The cells were sonicated,
followed by intensive washing and lysozyme treatment. Samples for SDS-PAGE and Coomassie blue staining were prepared as described in
Materials and methods. The following strains have been analyzed: 1, NDH31/pNDH33 (AyhcS AywpE); 2, NDH31/pNDH33-yhcS (AywpE) (+P); 3,
NDH31/pNDH33-ywpk; 4, NDH31/pNDH33-ywpE-yhcS; 5, NDH32 (AyhcS AywpE) derived from WB800 and 6, WB8OON/pNDH33-ywpE-yhcS carrying
yhcS and ywpE both on the chromosome and on the plasmid (+CP) were investigated. Strain NDH31 was derived from B. subtilis 1012, and
NDH32 and WBB0ON were derived from B. subtilis WB800. The size of molecular weight standards is indicated on the left margin.

WB800

with the medium and once with PBS buffer (pH 7.4)
and finally resuspended in PBS buffer. Cells correspond-
ing to ODsyg of 0.2 in 100 pul were used to measure the
o-amylase activities. As a control, the enzymatic activity
secreted in the supernatant from the strain 1012/
pPNDH37-amyQ was also determined and was set at
100%.

RNA extraction and Northern blot analysis

B. subtilis cells were grown and induced as described
under enzyme assays. Strains containing plasmids
pPNDH33-yhcS and pNDH33-ywpE-yhcS were induced
by 0.1 mM IPTG, and the cells were killed by addition
of “killing buffer” (5 mM MgCl,, 20 mM NaN3, 20 mM
Tris-HCI; pH7.5). Total RNA was extracted using the
protocol for isolation of RNA from yeast with modifica-
tion (Robert 1998). The cell walls were digested by addi-
tion of lysozyme (1 mg/ml) on ice and the samples were
then heated at 95°C for 5 min before addition of phenol.
The RNA concentration was measured at 280 nm and
10 pg of total RNA was loaded in each well. Northern-
blot analyses were performed as described (Roche Com-
pany 2003) with antisense RNAs produced against the
putative sortase mRNAs. Hybridizations specific for the

putative sortase genes were carried out with digoxigenin
(DIG)-labelled riboprobe RNAs synthesized in vitro with
T7 RNA polymerase from PCR products equipped with
a promoter recognized by that polymerase (DIG RNA
labelling kit; Roche Diagnostics, Mannheim, Germany).
Pairs of primers ON59/ON60 and ON61/ON62 were
used to amplify an internal part of the ykicS and the
complete ywpE gene, respectively. The ON68/ON69 pri-
mers were used to amplify dnaK used as a loading con-
trol (Homuth et al. 1999).

Results

Natural expression of yhcS and ywpE

B. subtilis yhcS codes for a putative sortase of 198
amino acids with one predicted transmembrane domain,
while ywpE encodes a predicted cytoplasmic protein of
only 102 amino acid residues (Comfort and Clubb 2004;
Pallen et al. 2001). The latter exhibits 23% sequence
identity with the C-terminal domain of SrtA. To follow
expression of the two genes during growth, each promo-
ter was fused to the lacZ reporter gene (Figure 1A), and
the B-galactosidase activity was measured during growth.
First, expression of the ywpE gene turned out to be
lower than that of the yhcS gene during exponential and
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early stationary phase, but both activities were compar-
able during late stationary phase (Figure 1B). Second,
expression of both genes increased over time to be high-
est during late stationary phase. We conclude from this
result that both putative sortase genes are preferentially
expressed after cells have entered the stationary phase.

Next, we analyzed transcription of the two genes in
the B. subtilis 1012 wild type strain directly by North-
ern blot to confirm these results. Total RNA was iso-
lated at different time points during growth and
hybridized against gene-specific DIG-labelled anti-
sense RNA. A transcript of about 4.5 kb could be
detected after 6 h of growth with a further increase at
8 h (Figure 4). The 4.5-kb transcript corresponds by
size to the bicistronic yhcR-yhcS operon (Price et al.
2005). The smaller bands below the 4.5-kb transcript
most probably represent processing or/and degradation
products. The failure to detect a ywpE-specific tran-
script even when using a large amount of RNA (30 pg)
could indicate instability (data not shown). When both
genes were expressed artificially from an IPTG-induci-
ble promoter, their bicistronic transcript was produced
in high amounts (Figure 4, left lane) indicating full sta-
bility under these conditions. In conclusion, putative
sortase yhcS gene is expressed preferentially at the late
stationary phase while ypwE expression could not be
detected in the Northern blot analysis. This might
point to a role of at least one of these two enzymes
(YhcS) in anchoring proteins during stationary phase
to the cell wall.

yhcS |
probe

probe

Figure 4 Detection of the expression of yhcS by Northern blot.
Three different B. subtilis strains were grown in LB medium and
aliquots were analysed by Northern blot using either yhcS (upper
panel), ywpE (middle panel) or dnak antisense RNA (lower panel,
loading control). +, strain NDH31/pNDH33-ywpE-yhcS where both
genes coding for putative sortases were artificially expressed from
an IPTG-dependent promoter; -, strain NDH31 where both putative
sortase genes have been deleted. Lanes 2 to 10, aliquots from wild
type strain 1012 were withdrawn at 2, 4, 6, 8 and 10 h after
inoculation.

Page 8 of 11

Search for yhcS and/or ywpE-dependent surface proteins
To identify putative sortase-dependent substrate pro-
teins, the three knockout strains SZ59 (AyhcS), SZ60
(AywpE) and NDH31 (AyhcS and AywpE) were con-
structed (Figure 2A and 2B). All three mutant strains
together with the isogenic wild-type strain were incu-
bated in LB medium for 8 h corresponding to the late
stationary phase and analyzed for the presence of cell
wall anchored proteins as described under Materials and
methods. No difference in the protein pattern could be
detected (data not shown). We conclude that the
amount of proteins anchored is not sufficient to be
detected either due to the low amount of sortase
enzymes or due to these two enzymes, or due to a mix-
ture of both. Therefore, we decided to repeat this
experiment with strains, where either ywpE or yhcS or
both genes could be expressed together using the IPTG-
inducible promoter, Pgrac from plasmid pNDH33.
Expression of these genes was analyzed by Northern
blot. While induced expression of yhcS and ywpE
yielded the expected RNAs of about 1 and 0.5 kb,
respectively, the artificial bicistronic operon led to the
detection of an RNA larger than 1 kb (Figure 2C).
These experiments clearly demonstrate that both genes
can be expressed if fused to a strong promoter.

Interestingly, strains that restored expression of ywpE
and/or yhcS exhibited two YhcS-dependent proteins
with molecular weights between 130 kDa and 170 kDa
which appeared in the strains that express yhcS (Figure
3, lanes 2 and 4). In addition, when the strain WB80ON,
deficient for eight different proteases (Wu et al. 2002),
carrying plasmid pNDH33-ywpE-yhcS was analyzed sev-
eral bands became visible. Among them a band running
with a molecular mass of 140 kDa seems to be a doublet
(Figure 3, lane 6). These protein bands were then
extracted and proteins were determined by MALDI-
TOF mass spectrometry. As we expected one of these
proteins is YhcR and the other is YfkN, both containing
the secretional sequence and potential sorting signal.

Displaying AmyQ on the surface using the sorting
sequences

Next, we asked whether the two putative sortases YhcS
and YwpE could anchor the proteins YhcR and YfkN on
the surface of B. subtilis using their sorting signal. We
fused the amyQ-encoded a-amylase to the potential
sorting signals of the two proteins together with an 123-
amino-acid spacer region resulting in pNDH89 (AmyQ-
YhcR123) and pNDH90 (AmyQ-YfkN123). These plas-
mids were transformed into strains SZ60 (AywpE),
NDH30 (AyhcS), NDH31 (Ayhc, AywpE) and 1012. To
determine the amylase activity on the cell surface, strain
NDHO03/pNDH19 that has been described to immobilize
amylase on the surface (Nguyen and Schumann 2006)
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and strain 1012/pNDH37-amyQ (Phan et al. 2006) that
secretes the amylase into the culture medium were used
as positive and negative control, respectively. Cells of
these strains were grown as described under Materials
and methods for Western-blot (Figure 5), and samples
were collected at the appropriate time points for mea-
suring the amylase activities (Figure 6).

When the a-amylase carrying the YfkN123 sorting
sequence was tested, anchored protein was hardly
detected in the strain expressing either ykcS or yhcS and
ywpE 8 h after induction (data not shown). When the
YhcR123 motif was tested, a strong anchoring occurred
in the presence of YhcS with some further increase
upon additional synthesis of YwpE (Figure 5, 8 h and 12
h). But since a substantial amount of AmyQ-YhcR123 is
already present in the absence of both putative sortases,
these hybrid protein molecules might be retained in the
cytoplasmic membrane due to the presence of a

ywpE | - | *+| - |+
yhcS - - + | +
1007 Pra— h
4h |70

u o-AmyQ

| e < cmgmmsas=s | -HipG

100

-
o-AmyQ

8h

70 -

[ = = w— e w—— |

.-.‘l“ wAmy0Q

I i — — l o-HtpG
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Figure 5 Detection of a-amylase anchored on the cell wall of
four different strains using either the YhcR123 sorting
sequence with the 123-aa spacer by Western blot. All B. subtilis
strains were inoculated to an ODs7g of 0.05 - 0.08 in LB medium.
After 1 h of growth, 0.1 mM IPTG was added to induce expression
of the hybrid amyQ gene and cells were collected 4, 8 and 12 h
after further inoculation. Equal amounts of cells were treated with
lysozyme to release the anchored a.-amylase. The samples were
applied to SDS-PAGE and Western blot as described (Nguyen and
Schumann 2006). Strains NDH31 (AywpE, AyhcS; lane 1), NDH30
(ywpE™, AyhcS, lane 2) SZ60 (AywpE, yhcS*; lane 3) and 1012 (ywpE,
yhcS*; lane 4), all of them carrying the plasmid pNDH89 (AmyQ-
YhcR123). HtpG, a cytoplasmic protein, was used as loading control
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Figure 6 a-Amylase activities in the presence and absence of
potential sortases. The following strains were analyzed: 1012/
pNDH37 (basic expression vector with the IPTG-inducible promoter
Pgrac and the signal sequence of amyQ), 1012/pNDH37-amyQ
(secretes a-amylase into the medium), NDHO03/pNDH19 (contains
the xylose-inducible srtA of L. monocytogenes and amyQ fused to
the sorting sequence of FnBPB), NDH30 (AyhcS)/pNDH89 (AmyQ-
YhcR123) and 1012/pNDH89. Cells were grown to the mid log-
phase and then, 0.5 mM IPTG and 0.5% xylose were added into all
five cultures to induce production of sortase A (strain NDHO3), wild-
type amylase (pPNDH37-amyQ) and hybrid a-amylase (from pNDH19
and pNDH89). Samples were collected after 4 h of induction and
the cells were separated from the growth medium by
centrifugation. a-Amylase activities were determined with whole
cells that the number of cells are identical in all probes and with
the supernatant from strain 1012/pNDH37-amyQ. The activities were
presented as relative activity (%), where the activity measured with

for the proteins released from the cytoplasm.

the supernatant from 1012/pNDH37-amyQ was set at 100%.

hydrophobic region being part of the sorting sequence.
The presence of a-amylase attached to cells in the
absence of potential sortases could also be observed
with whole cells 4 h after induction (Figure 6 NDH30/
pNDHS89, 5% activity) when compared with the negative
controls (0% activity for both 1012/pNDH37 and 1012/
pNDH37-amyQ), and the positive control (76% activity
for NDHO03/pNDH19). Additionally, a-amylase activity
of the sample that produces both potential sortases and
the hybrid protein, AmyQ-YhcR123 (Figure 6, 1012/
pNDHS89) was as high as the positive control (Figure 6,
NDHO03/pNDH19); and the same results could be mea-
sured for samples collected after 2 h and 8 h of induc-
tion (data not shown). This activity-based measurement
confirmed that the fusion YhcR123-AmyQ could be dis-
played on the surface of B. subtilis. In summary, these
results strongly suggest that the ykcS gene codes for a
true sortase able to anchor at least YhcR on the cell
wall of B. subtilis cell and we suggest renaming it to
srtD. This work could also propose an alternative way to
immobilize a heterologous protein on the cell wall of B.
subtilis using a fusion form of YhcR sorting sequence.
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Discussion

Using bioinformatics tools, two sortase-like genes and
two substrate proteins have been identified (Comfort
and Clubb 2004; Pallen et al. 2001; Boekhorst et al.
2005). We could show here that the putative sortase
genes ywpE and yhcS are preferentially expressed in the
late stationary phase. This finding suggests that these
enzymes fulfill their task mainly during that growth
phase. Furthermore, we could demonstrate that the two
putative sortase-dependent substrate proteins, YfkN and
YhcR, can be anchored on the cell wall in the presence
of YhcS. In terms of application, this work demonstrated
that the YhcR sorting sequence can be specifically used
to display heterologous proteins on the cell-wall of B.
subtilis cells. The B. subtilis cell wall contains peptide
crosslinks identical to those present in the L. monocyto-
genes cell walls. This suggests that the crosslink of
potential surface proteins to the peptidoglycan is formed
by the nucleophilic attack of the amino group of m-dia-
minopimelic acid cross-bridge within the lipid II precur-
sor as in the case of L. monocytogenes (Dhar et al. 2000).

Sortases have been used to anchor heterologous pro-
teins on the cell wall of different Gram-positive bacterial
species (Wernerus and Stahl 2004; Tsukiji and Naga-
mune 2009; Clancy et al. 2010). In a previous study, we
established a system to display recombinant proteins on
the cell wall of B. subtilis (Nguyen and Schumann
2006). It consists of the L. monocytogenes srtA gene
fused to an inducible promoter and inserted into the
chromosome and a plasmid-based expression system
with the S. aureus FnBPB sorting signal. Since the
AmyQ-FnBPB123 fusion protein could be hardly
detected in the absence of the L. monocytogenes sortase,
it implies that the YhcS sortase could not recognize the
sorting signal present in this protein (LPxTG). Here, we
show that the YhcS sortase could immobilize YhcR and
YfkN with their putative sorting signals LPDTS and
LPDTA, respectively. This motif is close to the one
recognized by SrtD of B. anthracis (LPNTA) (Maresso
and Schneewind 2008) and indicates that the YhcS pro-
tein really belongs to the group SrtD sortases. Therefore,
we suggest renaming the gene yhcS into srtD.

We are interested in using engineered bacteria as
delivery vectors for biopharmaceutical purposes. B. sub-
tilis would be an ideal organism since (i) it is a generally
recognized as safe (GRAS) organism, (ii) can localize in
tumours (Yu et al. 2008) enabling to use engineered B.
subtilis cells for cancer therapy, and (iii) has a large
body of information available to control protein expres-
sion in the cytoplasm, on the cell surface and secreted
into the culture medium (Pohl and Harwood 2010;
Schumann 2007). Different protein expression systems
have been developed using small inducer molecules
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such as xylose (Kim et al. 1996), IPTG (Phan et al. 2010;
Nguyen et al. 2005), arabinose (De Lencastre and de Sa-
Nogueira 2000), tetracycline (Kamionka et al. 2005), gly-
cine (Phan and Schumann 2007) and lysine (Phan and
Schumann 2009). (iiii) Additionally, surface displaying
systems are available to immobilize proteins (Nguyen
and Schumann 2006) that can bind to the surface of
mammalian cells facilitating the internalization of the
engineered bacteria (Bierne et al. 2002). Engineered bac-
teria expressing an appropriate surface protein facilitat-
ing their internalization into mammalian cells,
furthermore a protein enhancing their survival in the
host cells and a functional protein are called cellular
chips or microbiorobots. Microbiorobots can be used as
a vaccine delivery vector (Paccez et al. 2007) or for the
development of a cancer therapy in the near future.
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