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Unveiling the impact of cryptic plasmids 
curing on Escherichia coli Nissle 1917: massive 
increase in Ag43c expression
Qi Lin1,2, Zhuo Jiang1, Bo Zhong1, Jian‑qing Chen1,2, Zheng‑bing Lv1,2 and Zuo‑ming Nie1,2*   

Abstract 

Escherichia coli Nissle 1917 (EcN) is an important chassis strain widely used for the development of live biotherapeutic 
products (LBPs). EcN strain naturally harbors two cryptic plasmids with unknown function. During the development 
of LBPs using EcN strain, the cryptic plasmids were cured usually to avoid plasmid incompatibility or alleviate meta‑
bolic burdens associated with these cryptic plasmids. While the cryptic plasmids curing in EcN may appear to be 
a routine procedure, the comprehensive impact of cryptic plasmids curing on the EcN strain remains incompletely 
understood. In the present study, the effects of cryptic plasmids curing on EcN were investigated using transcrip‑
tome sequencing. The results revealed that only a small number of genes showed significant changes in mRNA levels 
after cryptic plasmid curing (4 upregulated and 6 downregulated genes), primarily involved in amino acid metabo‑
lism. Furthermore, the flu gene showed the most significant different expression, encoding Antigen 43 (Ag43) protein, 
a Cah family adhesin. Mass spectrometry analysis further confirmed the significant increase in Ag43 expression. Ag43 
is commonly present in Escherichia coli and mediates the bacterial autoaggregation. However, despite the upregu‑
lation of Ag43 expression, no Ag43‑mediated cell self‑sedimentation was observed in the cured EcN strain. These 
findings contribute to making informed decisions regarding the curing of the cryptic plasmids when Escherichia coli 
Nissle 1917 is used as the chassis strain.

Key points 

• The PCR method was used to identify the EcN mutant strain (EcNc) of cured cryptic plasmids.
• Compared to the EcN strain, a significant upregulation in the expression of Ag43 was observed in the EcNc strain.
• The Ag43 protein up‑regulated in the EcNc strain is a variant that does not mediate autoaggregation of bacterial 

cells.
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Introduction
Escherichia coli Nissle 1917 (EcN), originally isolated by 
Alfred Nissle in 1917, has been used as the active ingre-
dient in Mutaflor®, a pharmaceutical preparation used 
in the treatment of diverse diseases and intestinal dys-
functions (Sonnenborn and Schulze 2009). Due to its 
extensive history in medicinal use and the genetic trac-
tability inherent in E. coli, EcN has emerged as a primary 
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chassis strain. Researchers have undertaken modifica-
tions to enhance the functional capabilities of the EcN 
strain (Dong et  al. 2023). Noteworthy outcomes of EcN 
modifications include the expression of the SARS-CoV-2 
spike protein (SP) in EcN to immunize mice and induce 
antibody production (Sarnelli et  al. 2023), as well as 
in  situ expression of enzymes within the phenylalanine 
degradation pathway in the intestine for the treatment 
of phenylketonuria (Adolfsen et  al. 2021). Additionally, 
heterologous expression of immunomodulatory factors 
in EcN has been effective for the treatment of ulcerative 
colitis. These factors include trefoil factors (TFFs) (Prave-
schotinunt et  al. 2019), catalase and superoxide dis-
mutase (Zhou et al. 2022), and Elafin (Teng et al. 2022).

EcN harbors two stable cryptic plasmids, denoted 
as pMUT1 and pMUT2, with the length of 3.2  Kb and 
5.5  Kb, respectively (Sonnenborn and Schulze 2009). 
pMUT1 has a typical ColE1 replication origin, while 
pMUT2 has a cole2-like replication site and a ColE1-like 
mobilization site (Avison et al. 2001; Blum-Oehler et al. 
2003). There are 6 and 11 potential ORFs on pMUT1 and 
pMUT2 plasmids, respectively. Both plasmids contain 
Mob genes associated with plasmid transfer. The pMUT2 
plasmid also contains the relB-relE toxin-antitoxin sys-
tem, commonly found in plasmids, playing a role in 
maintaining plasmid stability. In addition to these genes, 
the other putative genes in both plasmids mostly have no 
known functions (Kan et al. 2020). In LB culture medium 
at 37 °C, the copy number of pMUT1 was approximately 
132 ± 11, while that of pMUT2 was about 97 ± 36.3 (Zai-
nuddin et al. 2019). Despite the presence of these cryp-
tic plasmids, their specific roles within the EcN context 
remain elusive and do not manifest any observable phe-
notypic alterations in EcN (Kan et al. 2020).

Some researchers have speculated that the presence of 
cryptic plasmids may impose a metabolic burden. Alter-
natively, others have considered the necessity of elimi-
nating cryptic plasmids to avoid plasmid incompatibility 
when introducing a new plasmid. As a result, they chose 
to cure the cryptic plasmids (Zainuddin et  al. 2019). 
There are two methods to cure cryptic plasmids based on 
plasmid incompatibility and CRISPR-cas9 described in 
previous reports (Kan et al. 2020; Liu et al. 2012; Zainud-
din et  al. 2019). The EcN mutant strain, resulting from 
the curing of both cryptic plasmids, is called as EcNc 
(Zainuddin et al. 2019).

In previous studies, comparative analyses between 
EcN and EcNc were conducted, focusing on morphol-
ogy, growth, and metabolism. The outcomes revealed no 
observable differences between the two strains in these 
aspects (Sonnenborn and Schulze 2009). A subsequent 
study showed that EcN and EcNc had similar intestinal 
colonization in mice (Remer et al. 2009). Another study 

explored antibiotic production in both EcN and EcNc, 
yielding qualitatively similar results (Seo et  al. 2012). In 
recent years, the potential impact of cryptic plasmids on 
heterologous protein expression in EcN was explored. 
It was observed that the presence of the native plasmid 
altered gene expression from the engineered plasmid sig-
nificantly (Kan et al. 2020).

While the cryptic plasmids curing in EcN may appear 
to be a routine procedure, the comprehensive evalua-
tion of its impact on the EcN strain has been lacking. The 
two cryptic plasmids have demonstrated stability in the 
absence of antibiotic pressure, leading us to hypothesize 
that these cryptic plasmids in EcN serve a biological func-
tion. Therefore, it is necessary to investigate the effects of 
cryptic plasmids curing on EcN to gain a more thorough 
understanding. In this study, we initially cured the cryp-
tic plasmids using the principle of plasmid incompatibil-
ity. Subsequently, three pairs of primers were designed to 
identify the EcNc strain. Upon obtaining both EcN and 
EcNc strains, transcriptome sequencing was conducted. 
Through transcriptome analysis, discernible differences 
were observed in the transcriptional profiles of genes 
between the EcN and EcNc strains, subsequently vali-
dated through qPCR. Following this, differential analysis 
was extended to the protein level, and an initial explo-
ration of phenotypic distinctions was also undertaken. 
These findings contributed to the understanding of the 
function of the two cryptic plasmids in Escherichia coli 
Nissle 1917.

Materials and methods
Strains and plasmids
The EcN strain (DSMZ: Cat# DSM6601) was purchased 
from BIOBW (BIOBW, Beijing, China). The E. coli BL21 
and DH5α strains were originated from GENEWIZ 
(GENEWIZ, Suzhou, China). The pRE112 suicide plas-
mid with chloramphenicol resistance gene was purchased 
from Fenghui Biology (Fenghui Biology, Changsha, 
China).

Construction of recombinant suicide plasmid by in‑fusion 
cloning
The linear pMUT1 and pMUT2 were amplified by 
inverse PCR using pMUT1 and pMUT2 plasmids in wild 
EcN as a template. The linear pRE112 with homologous 
arm was amplified by inverse PCR using pRE112 plas-
mid in SM10λpir strain as a template. The recombinant 
suicide plasmids, pRE112-pM1, and pRE112-pM2, were 
constructed by the One Step Cloning Kit (Yeasen Bio-
tech, Shanghai, China). The above used primers were 
listed in Additional file 2: Table S1.
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Curing of endogenous cryptic plasmids by plasmid 
incompatibility
The cryptic plasmids in EcN were cured through plas-
mid incompatibility (Liu et  al. 2012). Briefly, the above 
constructed pRE112-pM1 was introduced into EcN 
competent cells by electroporation method. Under the 
pressure of chloramphenicol, pMUT1 was cured by plas-
mid incompatibility. Then the EcN strains containing 
pRE112-pM1 were induced to commit suicide by adding 
10% sucrose to LB medium to obtain a mutant EcN strain 
containing only pMUT2 plasmid. The same method 
was used to cure pMUT2 to obtain EcNc strain. PCR 
was performed using two pairs of primers (muta5/6-F, 
muta5/6-R, muta7/8-F, muta7/8-R) that specifically bind 
to the cryptic plasmids to confirm that the cryptic plas-
mids have been cured. The used primers were listed in 
Additional file 2: Table S1.

Design of three pairs of primers to specifically identify 
the genome of EcN strain
By comparing the gene annotations of the EcN genome 
(GCF_021559835.1) with that of the commonly used 
E. coli strain, BL21 (GCF_014263375.1) and DH5α 
(GCF_000982435.1), the unique genes exclusive to EcN 
were obtained. Subsequently, these unique genes under-
went a thorough verification of their distinctiveness by 
conducting a BLAST search against the E. coli database. 
Among the unique genes, two genes exhibiting mini-
mal homologous sequences were selected for primer 
design respectively. Then a pair of primers were designed 
according to the conserved housekeeping gene gapA in 
E. coli. These three pairs of primers have similar Tm val-
ues and similar amplification product sizes, which can be 
used for multiplex PCR.

Transcriptome data analysis
The EcN and EcNc strains were streaked on LB agar 
plates without antibiotics to obtain isolated single colo-
nies. These colonies were then inoculated into LB liquid 
medium and cultured on a shaker at 37 °C, 220 rpm until 
reaching the logarithmic growth phase. The cells were 
centrifuged and sent to Shenzhen BGI genomics for tran-
scriptome sequencing.

Following the acquisition of raw data, RNA-seq reads 
were processed using the hisat2 (2.2.1) and htseq (2.0.2) 
tools, aligning them to the latest EcN reference genome 
(GCF_021559835.1) (Kim et  al. 2019; Putri et  al. 2022). 
Differential expression analysis was performed using 
DESeq2 (1.40.2) (Love et al. 2014). Criteria for identify-
ing differentially expressed genes included a log2 (fold 
change) absolute value ≥ 1.0 and a multiple hypoth-
esis test-corrected p-value ≤ 0.05. GO analysis about 

differentially expressed genes was performed using clus-
terProfiler (4.8.2) (Wu et al. 2021). These sequence data 
have been submitted to the Sequence Read Archive (SRA) 
databases under Bioproject accession PRJNA1045399.

qPCR validation
The two strains (EcN and EcNc) were inoculated into 
LB medium at a 1% inoculation rate, and the cultures 
were agitated on a shaker until reaching the logarithmic 
growth phase before harvesting. Total RNA extraction 
was carried out using a total RNA extraction kit (Gen-
stone Biotech, Beijing, China) according to the manu-
facturer’s protocol. Reverse transcription was conducted 
using a reverse transcription kit (Accurate Biotech, 
Changsha, China), and qPCR validation was performed 
using a qPCR kit (Yeasen Biotech, Shanghai, China) fol-
lowing the manufacturer’s protocol. The  2ΔΔCt method 
was employed for data analysis. The qPCR primers 
employed can be found in Additional file 2: Table S2.

Identification of differentially expressed protein by mass 
spectrometry
The two strains of EcN and EcNc were cultured to the 
logarithmic growth phase and harvested. Bacterial pellets 
were collected by centrifugation at 12,000 rpm for 3 min, 
washed with PBS, resuspended, and heated at 60  °C for 
30  min. The supernatant obtained after centrifugation 
was considered as heat-extracted protein. Following 
SDS-PAGE and Coomassie blue staining, the differential 
protein band was excised and sent to Shanghai Luming 
Biotechnology Co., Ltd. for mass spectrometry identifica-
tion. Initially, enzymatic digestion was applied to protein 
band, followed by a C18 desalting treatment. Subse-
quently, the processed sample was subjected to identi-
fication using a liquid chromatography-tandem mass 
spectrometry system including the Ultimate 3000nano 
ultra-high-performance liquid chromatography and 
Q Exactive Plus high-resolution mass spectrometer 
(Thermo, Massachusetts, USA). The acquired raw data 
from mass spectrometry analysis were processed and 
analyzed using Thermo Proteome Discoverer software 
(Thermo, Massachusetts, USA). The target protein data-
base from NCBI (https:// www. ncbi. nlm. nih. gov/ nucco 
re/ NZ_ CP022 686.1, Proteins from EcN genome) was 
employed for retrieval, and the search parameters were 
set as follows: trypsin digestion, a mass tolerance of 
10 ppm for the first-level mass spectrometry, and 0.05 Da 
for the second-level mass spectrometry. The peptide false 
discovery rate (FDR) is set at < 0.01, and the protein FDR 
is set at < 0.05. Under these criteria, a protein is consid-
ered to be present if it is mapped with at least one unique 
peptide which exhibits associated tandem mass spec-
trometry (MS/MS) spectra. For the mass spectrometry 

https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP022686.1
https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP022686.1
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identification, two independent repeats were performed 
(Additional file 2: Tables S4 and S5).

Aggregation test
According to the description in the report, aggregation 
assays were conducted for the EcN and EcNc strains 
(Hasman et al. 1999). Briefly, the two strains of EcN and 
EcNc were cultured to the logarithmic growth phase 
at 37  °C, 220  rpm. The bacterial cultures were adjusted 
to approximately uniform optical density at 600  nm 
 (OD600). Subsequently, 5 mL of the bacterial culture was 
transferred into sterile 15  mL centrifuge tubes. After 
brief vortexing, the cultures were allowed to stand at 
room temperature. At 30-min intervals within a 120-min 
period, 200  µL samples were extracted from the upper-
most layer of the bacterial culture, and their optical den-
sity at  OD600 was determined.

Statistical analysis
Statistical analyses and graphical representations were 
performed using GraphPad Prism software (Version 8.0). 
Group differences were assessed through t-tests (n = 3). 
Statistical significance was denoted as *p < 0.05, **p < 0.01, 
and ***p < 0.001, indicating a difference, significant 

difference, and extremely significant difference, respec-
tively. Row means with SEM.

Results
Curing of the cryptic plasmids by using the incompatible 
nature of the plasmid
To investigate the impact of the curing of cryptic plas-
mids on the EcN strain, we explored the differences at the 
transcriptional expression level. To obtain an EcN strain 
with the cryptic plasmids curing, we constructed two 
recombinant suicide plasmids which contained the same 
origin of replication (ori) with the cryptic plamids. These 
plasmids were sequentially transformed into EcN to cure 
the cryptic plasmids based on plasmid incompatibil-
ity, and then the sucrose was added to trigger their self-
destruction (Fig.  1a). The recombinant suicide plasmids 
contains the sacB gene encoding levansucrase. When the 
EcN strain harboring the recombinant suicide plasmids 
is cultivated on plates containing 10% sucrose, levan can 
be produced by the hydrolysis of sucrose through lev-
ansucrase, and accumulates in the periplasmic space of 
EcN, hindering bacterial growth, thus EcNc strains that 
do not harbor any plasmids could be screened (Ying et al. 
2016). Subsequently, the curing of cryptic plasmids was 
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Fig. 1 Cryptic plasmid curing. a The schematic diagram of the cryptic plasmid curing process. b The curing of the cryptic plasmids was identified 
by PCR. PCR was performed using two pairs of primers (muta5/6‑F, muta5/6‑R, muta7/8‑F, muta7/8‑R) that were listed in Additional file 2: Table S1



Page 5 of 10Lin et al. AMB Express           (2024) 14:48  

confirmed using PCR with specific primers designed 
based on previous studies (Blum-Oehler et al. 2003). The 
results showed bands of 429 and 361 bp in size for EcN, 
while absent in EcNc, indicating the successful curing of 
pMUT1 and pMUT2 in EcNc strain (Fig. 1b).

Identification of EcNc strain
At present, the identification of the EcN strain is com-
monly performed using three pairs of specific prim-
ers that target the combination of two cryptic plasmids 
(Blum-Oehler et  al. 2003). However, these three primer 
sets fail to identify EcNc strains. Additionally, the iden-
tification based on 16S rRNA can only provide basic 
identification at the species level. The EcNc strain is a 
non-antibiotic resistant strain of E. coli. Therefore, there 
is a need for a more convenient, rapid, and accurate iden-
tification method to identify EcNc.

Three pairs of primers were designed based on the EcN 
genome for the identification of EcN and EcNc strains 
through multiplex PCR. Initially, 115 unique genes 
were identified in EcN, which not existed in the BL21 
and DH5α genomes. Subsequently, two genes, ipuB and 
tcpC, were screened from these 115 genes. The product 
of ipuB is tyrosine-type DNA invertase, while the prod-
uct of tcpC is NAD (+) hydrolase. These two genes were 
selected because the number of E. coli strains harboring 
both them is the smallest (only 56, Fig.  2a, Additional 
file 2: Table S3). Consequently, primers were designed for 
the genes, ipuB and tcpC, and the length of PCR prod-
ucts was 293 bp and 464 bp, respectively. Additionally, a 
pair of primers were designed for the housekeeping gene 
gapA in E. coli, producing a PCR product of 629 bp. The 
results of PCR revealed that the bands were appeared 

at 293  bp, 464  bp, and 629  bp for both EcN and EcNc, 
whereas only the 629 bp band of the housekeeping gene 
was exhibited for BL21 and DH5α (Fig.  2b). This sug-
gested that the designed primers can be used for the spe-
cific identification of EcN and EcNc strains. To further 
differentiate between EcN and EcNc, one pair of primers 
targeting a cryptic plasmid was selected (muta5/6-F and 
mata5/6-R). The PCR amplification exhibited a 361  bp 
band of the cryptic plasmid for EcN, and no band exhib-
ited for EcNc strain (Fig. 2c), showing the ability to dis-
tinguish between EcN and EcNc.

Transcriptome analysis and qPCR verification of EcN 
and EcNc
Comparison of the transcriptome data between EcN and 
EcNc revealed some impact of cryptic plasmids curing 
on the genome transcription, affecting a small subset of 
genes—10 in total, with 6 downregulated and 4 upregu-
lated (Fig. 3a). Gene Ontology (GO) enrichment analysis 
of these differentially expressed genes showed a predomi-
nant enrichment in the molecular function, mainly in 
amino acid metabolism, such as carboxy-lyase activity, 
carbon–carbon lyase activity, tartronate-semialdehyde 
synthase activity, lysine:cadaverine antiporter activity, 
and lysine decarboxylase activity (Fig. 3b).

The gene (flu/agn43) encoding the Ag43/Cah family 
adhesin exhibited the most significant differential expres-
sion (Fig. 3c). Ag43 is widely distributed in E. coli strains 
and typically encoded by multiple gene copies within a 
single strain (Roche et  al. 2001). The EcN genome har-
bors three copies of the Ag43 gene (named fluA, fluB, 
fluC), expressing three Ag43 variants (named Ag43a, 
Ag43b, Ag43c), with the lengths of 1040 aa, 1039 aa, and 
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Fig. 2 Identification of primer design for EcN genome. a Venn diagram of blast results for ipuB and tcpC. The blast results for ipuB revealed 
similarities in only 184 strains, while the blast results for tcpC showed similarities in only 160 strains (as of September 9, 2023). Of these, 56 strains 
were found to overlap between the 184 strains with ipuB similarity and the 160 strains with tcpC similarity. b Primer verification. PCR amplification 
was performed on the BL21, DH5α, EcN, and EcNc strains using three pairs of designed primers. c Identification of EcN and EcNc strains. 
Incorporating a pair of primers (muta5/6‑F and mata5/6‑R) designed for identifying cryptic plasmids into the three primer pairs, PCR amplification 
was performed to further distinguish between EcN and EcNc
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948 aa, respectively. Recent research has classified Ag43 
variants into six distinct categories according to phylo-
genetic analyses, denoted as C1, C2, C3, C4, C5, and C6 
(Ageorges et al. 2023). In EcN, Ag43a and Ag43b fall into 
the C3 category, while Ag43c belongs to the C6 category. 
Notably, after the cryptic plasmids curing, the expression 
level of the C6 category Ag43c significantly increased at 
the transcriptional level, while there was no apparent dif-
ference in the expression of the other two C3 category 
Ag43 genes, Ag43a, Ag43b.

Subsequently, we further validated the transcriptome 
data using qPCR, selecting four genes from the differ-
entially expressed gene. Among these, two were sig-
nificantly upregulated (fluC and yfjQ), and two were 
significantly downregulated (fadA and gcl). The gapA 
gene was used as an internal reference. The qPCR results 
exhibited a consistent trend with the transcriptome 

results (Fig. 3d), providing further confirmation that the 
cryptic plasmids curing led to a significant increase in the 
transcriptional expression of Ag43c.

Massive increase in protein level of Ag43c after cryptic 
plasmids curing
The structure of Ag43c was predicted using Robetta 
(https:// robet ta. baker lab. org/). Ag43c, like other variants 
of Ag43, possesses a modular structure (Fig. 4a), includ-
ing: the N-terminal signal sequence (SP), the L-type pas-
senger domain (α domain), the autochaperone domain 
(AC), the C-terminal translocator (β domain) (Ageorges 
et  al. 2023; Benz and Schmidt 2011; Koh et  al. 2022). 
Upon crossing the inner membrane, the SP sequence 
is cleaved (Ageorges et  al. 2019; Koh et  al. 2022). After 
traversing the outer membrane, the region between the 
AC and β domain is cleaved by an unknown protease 
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(Ageorges et al. 2023). The Ag43α domain attaches to the 
cell surface through non-covalent interactions and can be 
easily released through simple heat treatment (Hender-
son et al. 2004; Klemm et al. 2003; Owen et al. 1996).

The cultures of EcN and EcNc were incubated at 60 °C 
for 30  min, followed by centrifugation. The superna-
tant was collected as the heat-extracted proteins and 
was detected by SDS-PAGE. Interestingly, by compar-
ing the heat-extracted proteins from the EcN and EcNc 
strains, a distinct band in the range of 50 kDa to 70 kDa 
is observed, consistent with the anticipated range of 
54.4 kDa to 60.1 kDa of Ag43c (Fig. 4b). Subsequent mass 
spectrometry analysis for this distinct band showed the 

presence of three proteins, Ag43a, Ag43b, and Ag43c 
(Fig. 4c–e, Additional file 1: Fig. S1). However, the rela-
tive abundance of Ag43c was 462.9 times that of Ag43a 
and 2740.7 times that of Ag43b. Furthermore, the relative 
abundance of Ag43c was at least 9.5 times higher than 
that of other proteins (Additional file 2: Table S4). Thus, 
we concluded that the predominant protein within this 
distinct band is Ag43c, indicating that the elevated con-
tent of Ag43c is responsible for the observed differential 
band. Additionally, two recombinant cryptic plasmids 
expressing SOD gene were constructed, and the EcN 
mutant strain containing only the recombinant cryptic 
plasmids exhibited no differential band caused by Ag43c, 
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similar to EcN strain, further confirming that the dis-
tinct band is a consequence of the cryptic plasmid cur-
ing (Additional file 1: Fig. S2). Based on the above results, 
we suggested that the expression of the Ag43c protein in 
EcNc is significantly higher compared to EcN, and this 
difference is attributed to the cryptic plasmids curing.

Ag43 does not mediate cell self‑aggregation
The above results have demonstrated a significant 
increase in Ag43 expression at the protein level follow-
ing the cryptic plasmids curing. Studies have indicated 
that Ag43 can induce autoaggregation and sedimenta-
tion, thereby influencing bacterial colonization and infec-
tion (Henderson et al. 1997). Therefore, we conducted an 
autoaggregation assay to compare the self-aggregation 
abilities of EcN and EcNc. The results revealed that there 
was no significant change in the autoaggregation ability 
between EcNc and EcN (Fig. 5a), and no sedimentation 
was observed in these two strains (Fig. 5b).

Discussion
Plasmids are extrachromosomal genetic elements that 
often encode features beneficial to the host organism, 
such as providing antibiotic resistance, heavy metal 
resistance, virulence factors, or metabolic functions, 
enhancing host adaptability (Al-Shayeb et al. 2022; Jacob 
and Hobbs 1974).

However, a substantial number of bacteria harbor 
‘cryptic’ plasmids that lack evident beneficial functions 
(Fogarty et al. 2023). Certain cryptic plasmids may pro-
tect the carrier bacterium from attacks by bacterio-
phages (Feldgarden et  al. 1995). EcN is one of the most 
commonly used chassis strains, harboring two cryptic 

plasmids with unknown phenotypes. The impact of cryp-
tic plasmids curing in EcN requires further investigation.

In the present work, the impact of curing these two 
cryptic plasmids on EcN was explored. Firstly, the EcNc 
strain containing no cryptic plasmid was constructed by 
plasmid incompatibility. Comparison of the transcrip-
tome data between EcN and EcNc revealed a small subset 
of differentially expressed genes, predominantly associ-
ated with amino acid metabolism. Intriguingly, massive 
increase in Ag43 expression caused by the cryptic plas-
mids curing in EcN strain. However, the curing of the 
cryptic plasmids selectively upregulates the expression 
of Ag43c, one of three distinct Ag43 variants. Previous 
studies on EcN have demonstrated that the expression 
of Ag43 is phase-variable, which is co-regulated by dam-
methylase (positive regulation) and the cell redox sensor 
OxyR (negative regulation) (Henderson and Owen 1999). 
Despite these regulatory factors were found, the mecha-
nism responsible for the specific upregulation of Ag43c 
following cryptic plasmids curing remains elusive.

Previous research indicates that Ag43 variants can 
mediate the self-aggregation of bacteria through 
the self-recognition ‘Velcro-handshake’ mechanism, 
which is associated with the oligomerization of the 
α-domain of Ag43 (Henderson et al. 1997; Heras et al. 
2013). Aggregation experiments indicated that the 
Ag43c variant in EcN is incapable of mediating bacte-
rial aggregation. Within uropathogenic E. coli strains 
(UPEC) CFT073, an E. coli strain highly homologous 
to EcN (van’t Hof et al. 2022), there are two variants of 
the Ag43 that do not mediate bacterial aggregation in 
aggregation assays (Klemm et al. 2003). Another inves-
tigation suggested that under conditions of low protein 
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Fig. 5 Aggregation test of strains. a Aggregation effect of EcN and EcNc strains (n = 3). b Self‑sedimentation visualization of EcN and EcNc strains. 
The effects observed after a 2‑h standing at room temperature for two bacterial strains with similar initial  OD600 values
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concentration, the oligomerization of the α-domain of 
a Ag43 variant in the CFT073 strain does not occur, 
consequently failing to mediate the self-aggregation 
of bacteria (Heras et al. 2013). Another study revealed 
that the presence of fimbriation on bacteria eliminates 
Ag43-mediated self-aggregation but does not impact 
Ag43 expression (Hasman et al. 1999). F1C fimbriae are 
present in EcN (Kleta et al. 2014). While these findings 
suggest potential explanations for the increased expres-
sion of Ag43c in EcNc without a concomitant change in 
self-aggregation ability, further studies are needed.

Ag43 is regarded as having significant potential 
for displaying foreign proteins with large molecu-
lar weights and complex structures, surpassing other 
surface display systems (Jose 2006). Currently, Ag43 
has been utilized for expressing exogenous protein 
fragments in numerous Gram-negative bacteria. For 
instance, the expression of the Ag43/Fcε3 chimeric pro-
tein on the surface of the E. coli strain Tan109 served as 
an effective asthma vaccine (Huang et  al. 2014). Addi-
tionally, the Ag43 system has been employed to dis-
play β-glucosidase on the outer membrane of E. coli, 
facilitating the fermentation of crystalline cellulose 
during simultaneous saccharification and fermenta-
tion (SSF) (Muñoz-Gutiérrez et  al. 2014). In another 
instance, red fluorescent protein (RFP) and cellulase 
(EC 3.2.1.4) were fused with Ag43, respectively, and can 
be displayed on the surface of E. coli (Jing et al. 2019). 
This implies that the EcNc strain, characterized by high 
expression of Ag43c, holds the potential to be used as a 
surface display strain.
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