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Abstract 

The number of infections and deaths caused by multidrug resistant (MDR) tuberculosis is increasing globally. One 
of the efflux pumps, that makes Mycobacterium tuberculosis resistant to a number of antibiotics and results in unfa-
vourable treatment results is Tap or Rv1258c. In our study, we tried to utilize a rational drug design technique using 
in silico approach to look for an efficient and secure efflux pump inhibitor (EPI) against Rv1258c. The structure 
of Rv1258c was built using the homology modeling tool MODELLER 9.24. 210 phytocompounds were used for blind 
and site-specific ligand docking against the modelled structure of Rv1258c using AutoDock Vina software. The best 
docked plant compounds were further analysed for druglikeness and toxicity. In addition to having excellent docking 
scores, two plant compounds—ellagic acid and baicalein—also exhibited highly desirable drug-like qualities. These 
substances outperform more well-known EPIs like piperine and verapamil in terms of effectiveness. This data shows 
that these two compounds might be further investigated for their potential as Rv1258c inhibitors.

Key points 

• Rv1258c is an important efflux pump which provides multidrug resistance in mycobacteria.
• The structure of the pump was prepared using homology modeling and docking studies were conducted 

against a number of phytocompounds looking for possible efflux pump inhibitors (EPIs).
• Based on in silico studies, two phytocompounds ellagic acid and baicalein show desirable properties of being 

an efficient EPI.
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Introduction
Tuberculosis, caused by Mycobacterium tuberculosis, is 
one of the most perilous infectious diseases in humans. 
Over the past few decades, there have been effective con-
trol methods implemented globally that have reduced the 
disease’s fatality rate. However, there is still a long way 
to go before the condition can be cured. In addition, the 
COVID-19 pandemic has had a devastating impact on 
the treatment and management of tuberculosis in recent 
years due to the global disruption of the healthcare sys-
tem. 10.6 million people were infected overall in 2021, 
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and 1.6 million fatalities were recorded (Global Tubercu-
losis Report 2022). The rise of drug-resistant tuberculo-
sis is one of the main reasons for the illness’s severity and 
death. Multidrug resistant tuberculosis (MDR TB) cases, 
which are resistant to multiple drugs, have also climbed 
in 2021. Mycobacteria develop drug resistance through 
a variety of processes, including their peculiar cell wall 
structure, drug inactivation or modification, drug recep-
tor inactivation, and efflux pumps.

In Mycobacterium tuberculosis, the main mechanism 
that renders them drug resistant is mutation in the tar-
get genes. However, in certain clinical isolates that were 
resistant to drugs, no gene mutation was found; rather, 
drug efflux mechanisms were used in these instances to 
confer drug resistance. Due to the fact that they export 
a wide range of diverse antibiotics, these efflux pumps 
are also known as multidrug-resistant (MDR) efflux 
pumps. (Neiderweis 2003). Since these pumps are cru-
cial for mycobacterial drug resistance, inhibiting them 
with efflux pump inhibitors (EPIs) can increase the 
effectiveness of antibiotics against the bacteria and turn 
them from drug-resistant to drug-sensitive phenotypes. 
These compounds can be combined with current anti 
TB drugs, thus restoring the activity of these standard 
drugs. These pumps can bind to the antibiotics and block 
them, thus, preventing the binding of antibiotics to the 
pumps (Sharma et al. 2019). Hence, research into efflux 
pump inhibitors is crucial, leading to the development of 
a strategy called the EPI strategy (Kapp et al. 2018).

Despite the fact that mycobacteria include a vast num-
ber of efflux pumps, some are crucial to the survival of 
the bacteria as well as drug ejection. One of the important 
efflux pumps is Rv1258c or Tap efflux pump due to its 
capacity to resist the antibacterial efficacy of rifampicin, 
amikacin, spectinomycin, gentomycin, isoniazid, etham-
butol, and pyrazinamid and some second line fluoroqui-
nolones (Cloete et  al. 2018). Due to its role in bacterial 
proliferation and drug resistance, this efflux pump has 
recently been receiving a lot of attention and has been 
found to be active in susceptible as well as drug resistant 
bacteria. (Cloete et al. 2018). It is a pump belonging to the 
major facilitator superfamily of transporters. Mycobacte-
ria have been shown to have high treatment resistance 
due to the gene and certain of its mutations (Liu et  al. 
2019). Furthermore, Tap gene expression is increased in 
response to drugs such as ofloxacin and rifampicin, and 
deletion of this gene resulted in a reduction in microbe 
growth in culture media (Jia et al. 2022).

Due to its critical involvement in drug efflux and bac-
terial development, this efflux pump can serve as a key 
pharmacological target for the treatment of drug resist-
ant tuberculosis, and research into neutralising the 
efflux pump’s effect is essential. Several studies on the 

inhibition of Tap or Rv1258c, as well as its structure pre-
diction, have been conducted. The structure of Tap has 
been predicted in several studies by using various homol-
ogy modelling tools (Sharma et  al. 2010; Scaini et  al. 
2019). Certain synthetic compounds that can function as 
possible EPIs were reported using a bioinformatics tech-
nique like verapamil (Cloete et  al. 2018). Using in silico 
techniques, it was also shown that a synthetic tetrahy-
dropyridine, NUNL02, which is a recognised EPI in other 
bacteria, is effective against Tap (Sciani et al. 2019). How-
ever, synthetic compounds may possess additional side 
effects; hence, plant based compound such as piperine 
was identified as potential EPIs against Rv1258c. How-
ever, due to specific drawbacks, none of them have been 
approved for clinical use (Sharma et al. 2010; Cloete et al. 
2018). Verapamil has numerous adverse effects, includ-
ing nausea, vomiting, fatigue, hypotension, and others 
(Singh and Eldrol 1978). Additionally, even though pip-
erine and rifampicin have been proven to work in con-
cert, the possibility of piperine’s interactions with other 
medications has hindered its commercial usage (Cloete 
2018). Recently, a drug repurposing study was carried 
out to look for other medications that might be used as 
Rv1258c EPIs. (Dwivedi et al. 2022). However, there are a 
lot of other compounds whose studies need to be carried 
out that may be used as EPIs against Rv1258c and may 
possess far fewer side effects as compared to the reported 
compounds.

Hence, the present work attempts to identify new EPIs 
of Rv1258c using the bioinformatics approach (Browne 
et al. 2022, Jayaram et al. 2012). Plants are the key source 
of natural chemicals that might work well as EPIs and 
may have far fewer toxic side effects as compared to syn-
thetic ones. India has a long history of the application of 
herbs in the traditional medicine systems such as Unani, 
Ayurveda, and Siddha (Biswas et  al. 2021). Many com-
munities of India are still vastly dependent on plants 
for healing diseases like TB. Some examples include the 
root of Calpurnia aurea, the seed of Ocimum basilisum, 
seeds of Piper nigrum (Mangwani et  al. 2020; Sharma 
and Yadav 2017). However, there is a dearth of laboratory 
testing and computational methods for the scientific con-
firmation of the plants or their compounds. Keeping this 
in mind, the present study targeted 210 compounds for 
screening against the predicted structure of Rv1258c.

Materials and methods
Homology modeling
For initial data, preliminary homology modelling was 
carried out by an online database tool, SWISS MODEL. 
However, in order to make the structure ready for molec-
ular docking and proper validation, homology modeling 
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was carried out using MODELLER 9.24 (Eswar et  al. 
2006; Webb and Sali 2016).

The modeling experiments were conducted in the fol-
lowing two steps.

Template selection and model building
The protein sequence of Rv1258c was retrieved from 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database (Aoki and Kanehisa 2005). Then the sequence 
in FASTA format was subjected to a BLAST (Basic Local 
Alignment Search Tool) search available on the NCBI 
(National Centre for Biotechnology Information) web-
site, which looks for close homologs. BLAST did not 
return any results, meaning that no close homolog of the 
sequence is present in the database. Next, we subjected 
the structure to the PSIPRED webserver (http:// bioinf. cs. 
ucl. ac. uk/ psipr ed/), and the GeneTHREADER option was 
selected, which detects proteins of the same superfamily 
and hence, distant homologs of protein sequences (Jones 
1999; McGuffin and Jones 2003). Simultaneously, we 
have also used MODELLER software for homology mod-
elling of the protein. The sequence was given as input to 
the profile.build command in MODELLER to search for 
templates. MODELLER also returned only one result, i.e., 
1pw4. Therefore, we considered 1pw4, which is a glycerol 
3-phosphate transporter, as our template, and this tem-
plate was used for model building and further analysis.

Model refinement and validation
This model was refined further using the 3Drefine web 
server, which iteratively refines a model for five times 
using the i3Drefine algorithm (Bhattacharya et al. 2016).
The model with the minimum energy was selected for 
further validation. Model validation was done using the 
Procheck web server, and the Ramachandran plot was 
used, which shows the energetically favourable amino 
acids of the protein in a graph (Laswoski et al. 1993; Las-
woski et al. 1996). The ProSa web server was used to look 
for the ProSa Z score to check the overall quality of the 
model (Wiederstein and Sippl 2007).The Z score is a gen-
eral indicator of model quality that measures the struc-
ture’s total energy’s deviation from an energy distribution 
derived from random conformations.

Molecular docking
Preparation of the target protein
The modeled structure of Rv1258c was used as our recep-
tor. The protein was optimised for docking using the 
Dockprep tool of UCSF Chimera. Hydrogen atoms and 
Gasteiger charges were added. The net charge was zero, 
and our receptor was saved in pdb format. The receptor’s 
energy was also minimized using UCSF Chimera soft-
ware. The molecular dynamics simulation of the protein 

was also carried out using the MDWeb server (Hospi-
tal et  al. 2012) and this structure was used for further 
analysis.

Ligands selection and preparation
For our study,  210 different plant compounds and one 
established efflux pump inhibitor, piperine, were selected 
and employed as ligands based on traditional plants as 
mentioned in the supplementary file (Additional file  1: 
Table S1). The structures of these proteins were retrieved 
from the Pubchem chemical library (https:// pubch em. 
ncbi. nlm. nih. gov/) in sdf format. Using Open Babel soft-
ware, the sdf format was converted to the pdb format (O’ 
Boyle et al. 2011). The program UCSF Chimera 1.15 was 
used to optimise the ligands.

Energy minimization
To reduce their energy, the tiny molecules (ligands) were 
sent into the Chimera software. 5000 rounds of the con-
jugate gradient and 5000 cycles of the steepest descent 
were used to reduce the energy. The structures were 
minimized, after which protonation of the ligands was 
carried out, Gasteiger charges were added, and the files 
were saved in pdb format (Wang et al. 2006). The ligands 
were given Gasteiger-Hückel charges and AMBER ff14SB 
during the minimization phase (force fields). These opti-
mised ligands were employed in the molecular docking 
studies.

Molecular docking studies
Molecular docking studies were carried out between our 
target protein Rv1258c and 210 ligands to explore poten-
tial EPIs from these phytocompounds. Molecular dock-
ing was carried out using AutoDock Vina (http:// vina. 
scrip ps. edu) run from UCSF Chimera 1.15 (Butt et  al. 
2020; Pettersen et al. 2004). In order to ascertain the effi-
cacy of the phytocompounds, both blind and site-specific 
docking were performed. Docking experiments were per-
formed in triplicate for both types of docking (site-spe-
cific and blind).

Blind docking
For performing blind docking, the grid box was placed 
at the centre of the protein, and the x, y, and z coordi-
nates were extended so as to cover the entire protein. 
The AutoDock Vina was run by Chimera 1.15 to find the 
binding affinities of the ligand to the receptor. The num-
ber of binding modes was 9. The exhaustiveness of the 
search was 8. The conformations were ranked accord-
ing to their binding affinities. Verapamil and piperine, 
as previous effux pump inhibitors were docked against 
the efflux pump and their docking scores are taken as 
control.

http://bioinf.cs.ucl.ac.uk/psipred/
http://bioinf.cs.ucl.ac.uk/psipred/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://vina.scripps.edu
http://vina.scripps.edu
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Site‑specific docking
Identification of probable active sites is a key issue for 
performing virtual screening of compounds. In this 
paper, to perform site-specific docking, the active site 
of Rv1258c was predicted using the fpocket web server 
(Le Guilloux et al. 2009), which detects possible cavities 
in the protein where small molecules can bind. For our 
work, we had uploaded our target protein in the fpocket 
web server. It returned a list of pockets ranked by their 
likelihood of binding a small molecule. The first pocket 
has the highest possibility of binding to ligands. So we 
selected it as our active site to perform site-specific dock-
ing. Site-specific docking was performed using a similar 
protocol as in blind docking, but the grid box size was 
fixed at 40*40*40, and the x, y, and z coordinates were 
49.378, 10.375, and − 34.754, as per the active site of the 
protein.

Interaction studies through LigPlot + v.2.2.5
The plant compounds with the lowest docking scores 
were further evaluated in LigPlot + 2.2.5 (Laswoski and 
Swindell 2011). The amino acids of the protein play a 
crucial role in binding with the ligands. The number and 
types of bonds can be visualised in 2D using this soft-
ware. This software can be used to visualise protein ligand 
complexes’ hydrogen bonds and hydrophobic interac-
tions. The creation of hydrogen bonds and hydrophobic 
interactions plays a crucial role in protein–ligand interac-
tions and improves the stability of the complex. Hydro-
phobic interactions play a crucial role in protein–ligand 
interactions and improves the stability of the complex.

Compound screening for drug likeliness and toxicity
The top 10 compounds from blind and site-specific dock-
ing with the lowest docking score were subjected to drug 
likeliness and the study of ADMET properties. For a 
compound to be a drug, it should have some basic prop-
erties. It should not have more than 5 H bond donors, 
it should not have more than 10 H bond acceptors, its 
molecular mass should be less than 500 dalton, partition 
coefficient should not be greater than 5. This is called the 
Lipinski Rule of 5. The canonical smiles of the best ten 
ligands were downloaded from the Pubchem database, 
and they were subjected to study to determine whether 
these compounds follow the Lipinski rule, using five 
software programs, namely, Molinspiration, pkCSM, the 
Lipinski filters server, DruLiTo, and SwissADME (Pires 
et al. 2015; Umar et al. 2021; Diana et al. 2017). Follow-
ing that, the compounds’ ADMET properties were inves-
tigated. ADMET stands for adsorption, distribution, 
metabolism, excretion, and toxicity. To assess ADMET 
features such as P-gp substrate and inhibitor, BBB (Blood 
Brain Barrier), CNS (Central Nervous System), Caco-2 

permeable, and toxicology parameters, the compounds’ 
canonical smiles were uploaded to pkCSM, a publicly 
reachable online web server, ProTox-II server, AdmetSAR 
server, and ADMETlab 2.0. (Banerjee et al. 2018; Cheng 
et  al. 2012; Motwalli et  al. 2021; Dong et  al. 2018). The 
bioavailability of a compound as a drug is also an impor-
tant research area and is based on its ADME proper-
ties. The bioavailability scores of these compounds were 
determined using the SwissADME and admetSAR 2.0 
tools. Further, the LD50 (rat) of these compounds and 
their toxicity class were also determined using the ProTox 
II web server, and these are depicted in table(Table  5).
These are freely available web servers that are used to 
predict the ADMET properties of compounds in silico.

Results
Rv1258c is a significant mycobacterial efflux pump that 
contributes to multidrug resistance by conferring resist-
ance to numerous antibiotics. As a result, finding a 
potent EPI against this pump is a crucial area of research. 
Therefore, the present study aims to look for potent 
EPIs from plant sources, as these have a number of ben-
efits as compared to synthetic sources. For the study, 
we retrieved the amino acid sequence of Rv1258c from 
KEGG having accession number T30239:34247, and it 
was seen that the protein consists of 419 amino acids. 
Initially, a BLAST search was performed, which indicated 
that no close homolog of the protein of interest was avail-
able. Consequently, the distant homologs algorithm was 
employed for predicting the structure using the PSIPRED 
web server. The search resulted in six templates based 
on a significant p value (less than 0.001), out of which a 
glycerol 3-phosphate transporter (1pw4) from E.coli was 
ranked at the top with a score of 331 (p = 1*10–8). Tem-
plates were also searched using the MODELLER 9.24 web 
server using the profile.buildcommand, which yielded 
the same outcome, suggesting 1pw4 as the template. The 
results were found to correlate with the structure predic-
tion results of Cloete et al. 2018. Further, the model was 
built up using using Align2D command of Modeller 9.24, 
which yielded 10 models, and the model with the lowest 
DOPE (Discrete Optimized Protein Energy) score was 
selected as our model. A sample of native protein struc-
tures was used to calculate the DOPE, or atomic dis-
tance-dependent statistical potential. Its sole foundation 
is the probability theory. The joint probability density 
function (pdf) of the atomic Cartesian coordinates’ neg-
ative logarithm is a statistical potential. As a result, the 
DOPE method is a statistical method for evaluating built 
structures and determining the most accurate structure. 
From a group of models created by MODELLER 9.24, 
the best structure can be chosen using the DOPE model 
score. A model is better if its DOPE score is lower. The 
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DOPE scores along with the model are shown in table 
(Additional file 1: Table S2). The 9th model has the lowest 
DOPE score and hence, selected as the best model for the 
molecular docking.

This model was further refined using the 3Drefine web 
server, and the refined model with the lowest energy is 
selected for further analysis. The refined model was 
analysed by studying the Ramachandran plot as shown 
(Additional file  1: Fig. S1a) which showed that 89.1% of 
the residues fall in the allowed region, with 2 residues 
falling in the disallowed region, and a ProSa Z score of 
−  4.61 was obtained (Additional file  1: Fig. S1b). The 
combination of the backbone dihedral angles is statis-
tically represented in the Ramachandran plot. To fur-
ther analyse the predicted structure, the templates were 
superimposed, which showed less deviation from the 
folds predicted (Additional file 1: Fig. S2).

After the model was created and validated, molecular 
docking was carried out. In the present study, blind and 
site-specific docking, both approaches were adopted. 
Blind docking involves attaching a ligand to the entire 
surface of a protein without any knowledge of the tar-
get pocket. Blind docking necessitates numerous tri-
als/runs and energy calculations prior to identifying a 
favourable protein–ligand complex pose. In site-specific 
docking, locus for ligand to bind is predicted using the f 
pocket web server and based on the results the grid box 
is designed as per the x, y and z axis values given.

In the present study, for the site-specific docking, the 
active site for the ligand to bind was analysed by using f 
pocket server. The active site of the protein and grid box 
around the protein is shown in figures in the supplemen-
tary file (Additional file 1: Figs. S3 and S4).

For molecular docking,AutoDock Vina software was 
used for both blind and site-specific docking experiments 

for the 210 compounds from various medicinal plants 
selected based on the traditional and scientific reports 
that they work against tuberculosis. It was found that 10 
out of 210 phytocompounds showed low binding energy. 
These 10 ligands with their docking scores, along with the 
standard error of the dataset, are depicted (Table 1). The 
ligands N-transferuroyl-4’-O-methyldopamine, ellagic 
acid, abyssinone II, mollic acid glucoside, glabridine, 
chrysoeriol, naringenin, luteolin, isoliquiritigenin, and 
baicalein had blind docking scores of −9.1, −9.6, −9.6, 
−9.2, −9, −8.6, −8.5, −8.4, −7.9 and −9 respectively. Sim-
ilarly, for site-specific docking, these compounds exhib-
ited docking scores of −8.7, −8.6, −8.6, −8.5, −8.5, −8.5, 
−8.4, −8.4, −8.4, −8.3 respectively. The docking experi-
ments were performed in triplicate, and the standard 
error was found to be negligible in all the sets of experi-
ments. In the study, it was found that in blind docking, 
the binding energy of piperine was −9.3. Blind dock-
ing scores of −9.2 and −8.5 for piperine and verapamil, 
respectively, site-specific docking of verapamil and piper-
ine showed docking scores of −5.6 and −9.2, respectively, 
in the present study.

The ten docked complexes were subjected for interac-
tion studies in the LigPlot + v. 2.2.5 software between the 
ligands and Rv1258c and these are depicted in figures 
(Additional file 1: Fig. S5ai–tii) in the supplementary file. 
From the figures, we see that the ligands and Rv1258c 
interact mainly by hydrogen bonding and hydrophobic 
interactions. Blind docking analysis of N-transferuroyl-
4’-O-methyldopamine reveals that the ligand and macro-
molecule interact via two H bonds: one with Thr51 bond 
length 3.04 and one with Pro361, bond length 2.81. For 
site-specific docking with the same compound, we find 
2 H bonds- 1 H bond with Ala301, bond length 2.70 Å, 
1 H bond with Ser244 bond length 3.26  Å. In the case 

Table 1 Docking scores along with standard error of the 10 ligands

Sl. No Ligand Blind docking Standard error Site-specific docking Standard error

1 N-transferuroyl-4’-O-methyldo-
pamine

− 9.1 0.066669 − 8.7 0.110868

2 Ellagic acid − 9.6 0 − 8.6 0

3 Abyssinone II − 9.6 0.0334 − 8.6 0.028868

4 Mollic acid glucoside − 9.2 0.057735 − 8.5 0.028868

5 Glabridine − 9 0.533349 − 8.5 0.46188

6 Chrysoeriol − 8.6 0 − 8.5 0

7 Naringenin − 8.5 0.03334 − 8.4 0.028868

8 Luteolin − 8.4 0 − 8.4 0

9 Isoliquiritigenin − 7.9 0.100003 − 8.4 0.086603

10 Baicalein − 9 0.033334 − 8.3 0.028868

11 Piperine − 9.2 0.11547 − 9.2 0.06669

12 Verapamil − 8.5 0.128023 − 5.6 0.425584
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of ellagic acid, for blind docking, we find 3 H bonds, 1 
H bond with Ala48 bond length 3.14 Å, 1 H bond with 
Leu364 bond length 2.70 Å, 1 H bond with Ser244 bond 
length 3.00  Å. For site-specific docking, we find 3 H 
bonds- 1 H bond with Tyr146 bond length 3.16  Å, 2 H 
bonds with Asn151 bond length 2.80 Å each. Blind dock-
ing yields two H bonds for Abyssinone II: one with Gly 
117 (bond length 2.70) and one with Asp23 (bond length 
2.93).In case of site-specific docking we not see any H 
bonds, but hydrophobic interactions are responsible for 
docking. The residues involved in hydrophobic interac-
tions are Val245, he246, Phe330, Ala 306, Leu311, Lys249, 
Gly368, Ser45, Tyr250, Ser45, Ala367, Val245, Leu343, 
Phe247, Ser244. The ligand, mollic acid glucoside, has 5 H 
bonds involved in the blind docking interaction.These are 
two H bonds with Asn221 with bond lengths of 3.28 and 
2.21, respectively, two H bonds with Val224 with bond 
lengths of 3.02 and 2.70, and one H bond with Leu222 
with bond length of 2.64.In the case of site-specific dock-
ing, we see 3 H bonds- H bond with Ala319 bond length 
3.10, 1 H bond with Leu317 bond length 3.05, 1 H bond 
with Ala266, bond length 3.01 Å. In the case of glabridine 
for blind docking, we have found 2 H bonds with Arg124 
with bond length 2.82  Å and 3.35  Å respectively. For 
site-specific docking, we find only 1 H bond at Gly368 
bond length 2.93 Å. In the case of chrysoeriol, for blind 
docking, we see 4 H bonds- 1 H bond with Arg134, bond 
length 3.24 Å, 3 H bonds with Arg124 with length 3.10 Å, 
2.82 Å, 2.99 Å respectively. For site-specific docking with 
the same compound, we find 2 H bonds- 1 H bond with 
Thr290, bond length 2.91 Å, 1 H bond with Asn151, bond 
length 2.92 Å. In the case of naringenin, for blind dock-
ing, we see 4 H bonds Bond lengths for three H bonds 
with Asp 79 are 2.72, 2.91, and 3.31, respectively, and 
one H bond with Ser 26 is 2.75.In the case of luteolin, for 
blind docking, we find 2 H bonds- 1 H bond with Thr290, 
bond length 2.96 Å, 1 H bond with Asn151 bond length 
3.01. For site-specific docking, we find 3 H bonds- 1 H 
bond with Thr290 bond length 2.92  Å, 2 H bonds with 
Asn151 bond length 2.92 Å and 3.00 Å respectively. For 
isoliquiritigenin, in blind docking we find 2 H bonds- 2 H 
bonds with Gln329 with bond length 3.02 Å and 3.22 Å 
respectively. For site-specific docking, we do not find any 
H bonds. Only hydrophobic interactions are present and 
the residues involved are Val245, Phe330, Leu383, Lys249, 
Thr379, Thr371, Tyr250, Ala306, Phe245, Val245, Phe380. 
In the case of baicalein, for blind docking, we find 4 H 
bonds- 1 H bond with Leu246 bond length 2.71  Å, 2 
H bonds with Ser244 bond length 2.78  Å, 3.06  Å, 1 H 
bond with Leu364 bond length 2.71  Å respectively. For 
site-specific docking, we find 3 H bonds- 1 H bond with 
Tyr146 bond length 2.88 Å, 2 H bonds with Asn151 with 
bond length 2.98 Å, 2.94 Å respectively.

Additionally, 10 compounds selected based on the 
docking results were subjected to drug likeliness stud-
ies using different web servers, namely Molinspiration, 
pkCSM, the Lipinski filters server, DruLiTo, and Swis-
sADME and the results are depicted in table (Table  2). 
The ADMET properties of these compounds were also 
assessed using various web servers, namely, pkCSM, Pro-
Tox-II, admetSAR 2.0, and admetLab 2.0. and the results 
are compiled (Table  3). From the drug-likeness studies, 
we find that except for mollic acid glucoside, all the other 
phytocompounds follow all the Lipinski Rule of 5. Mol-
lic acid glucoside has two violations: a higher molecular 
weight and a larger number of H bond donors. ADMET 
analysis showed that compounds showed acceptable 
ADMET properties, and the results were consistent 
across four different web servers. However, one of the 
compounds, glabridine, exhibits AMES toxicity using 
the admetSAR 2.0 tool and is carcinogenic using the 
ADMETlab 2.0 tool. Naringenin, isoliquiritigenin were 
also carcinogenic when using the same tool. Luteolin and 
isoliquiritigenin are also seen to be positive for AMES 
toxicity using ADMETlab 2.0. Luteolin is also seen to be 
positive for mutagenicity and carcinogenicity using Pro-
Tox-II software. Using ADMETlab 2.0, we can see that 
our control piperine is toxic and carcinogenic to AMES.

Using two programmes, admetSAR 2.0 and Swis-
sADME, the bioavailability scores of the 10 compounds 
were assessed (Table  4). In order to evaluate acute oral 
toxicity, we used the LD50 test. The LD50 is the dosage of 
a medication required to render 50% of the test animals 
dead. The lower a drug’s LD50 value, the more lethal it 
is. The substances are classified according to their toxic-
ity, with class 1 being the most dangerous, classes 2 and 3 
being moderately harmful, and classes 4 and 5 being the 
least toxic. None of the ten phytocompounds were found 
to be harmful. The ProTox-II software was used to analyse 
the LD50 (rat) of the 10 compounds, and the same server 
was also used to determine their toxicity class (Table 5). 
The pkCSM software showed that these substances are 
efficiently absorbed by the human digestive system. The 
oral route of drug administration is the most widely 
used and preferred method because it is cost-effective, 
non-invasive, and patient-compliant, making it a crucial 
factor in determining the fate of novel medications and 
EPIs. Using SwissADME and admetSAR 2.0 software, it 
is observed that the compounds ellagic acid and baica-
lein have high bioavailability scores. They have a bioavail-
ability score of 0.55 in SwissADME and 67.14 and 67.1 in 
admetSAR 2.0 for ellagic acid and baicalein, respectively. 
None of the other compounds have a bioavailability score 
of more than 50, which is the threshold for good bio-
availability according to admetSAR 2.0. Ellagic acid and 
baicalein both have excellent LD50 values of 2991 mg/kg 
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and 3919  mg/kg, respectively, and are classified as hav-
ing toxicity classes 4 and 5, according to the ProTox-II 
web server. This is much better than piperine, which has 
a bioavailability score of 42.86 using admetSAR 2.0 and 
0.55 using SwissADME software. Additionally, it belongs 
to toxicity class 4 using the ProTox-II web server and has 
a very low LD50 of 330  mg/kg. The 3D chemical struc-
tures of ellagic acid and baicalein are depicted in Figs. 1 
and 2 (Table 6).

Discussion
The ideal antibiotic adjuvant should have appropriate 
drug like characters, low toxicity and preferable bioac-
tivity. Due to a lack of one or more of these properties, 
many adjuvants failed clinical trials. Drug discovery 
efforts have focused on finding Rv1258c system inhibi-
tors and has also led to the identification of promising 
leads: piperine and verapamil have shown to work as 
adjuvant in M.tuberculosis overexpressing Rv1258cefflux 
pumps (Sharma et  al. 2010, Cloete et  al. 2018). Despite 
promising in  vitro activity, high systemic toxicity and 
low bioavailability prevented both classes of compounds 
from being used clinically. A few synthetic molecules that 
might function as possible EPIs have been mentioned in 
several docking-based studies, although synthetic com-
pounds almost invariably have drawbacks. Therefore, 
the problem of side effects and biocompatibility can be 
solved by the search for natural substances, particularly 
those derived from plant sources. Due to their high toxic-
ity and poor pharmacokinetic characteristics, most anti-
biotic adjuvants were clinically ineffective (Abdel-Halim 
et  al. 2019). The current work tries to create a trust-
worthy structure of Rv1258c and performs molecular 

docking tests on 210 plant chemicals to check for poten-
tial inhibitory activity against Rv1258c.

The availability of crystal structures is necessary for a 
good start to look for potential efflux pump inhibitors. 
But in this case the structure of Rv1258c is yet to be elu-
cidated experimentally. Therefore, we had to depend on 
bioinformatics tools to predict the molecular structure 
of Rv1258c. The protein sequence of Rv1258c was down-
loaded from KEGG database and a reliable and famous 
software Modeller 9.24 was used to build the structure of 
Rv1258c. One drawback of computational modelling is 
the deviance of predicted models from their true, native 
structures as determined by experiment. To address this 
problem, refinement of the predicted model is necessary. 
Refinement of the model helps to achieve the most native 
like conformation of the protein. Our model was refined 
using 3D refine web server. The 3Drefine web server uses 
the optimization of an energy bonding network and an 
energy minimization process to refine structures. The 
correct conformation of interacting residues and atoms 
at the interface is the goal of structure refinement, which 
is essential for the practical application of computational 
protein docking models. The built structure was further 
validated using the Ramachandran Plot and ProSa Z 
score. The combination of the backbone dihedral angles is 
statistically represented in the Ramachandran plot. Pro-
tein structural scientists can learn more about the struc-
ture of peptides and determine which torsional angles 
are allowed by creating a Ramachandran plot. The total 
energy of the structure deviates from an energy distribu-
tion derived from random conformations, and this devia-
tion is measured using the Z-score, which measures the 
overall model quality. Z-scores that fall outside the range 

Table 4 Bioavailability scores of the ten phytocompounds

*The phytocompounds with the highest bioavailabililty scores

Bioavailability score

Sl. No Name of the compound Adsmet SAR2.0 SWISS ADME

1 N-transferuroyl-4’-O-methyldopamine 0.5 0.55

2 Ellagic acid 67.1* 0.55*

3 Abyssinone II 27.14 0.55

4 Mollic acid glucoside 17.14 0.11

5 Glabridine 37.14 0.55

6 Chrysoeriol 42.86 0.55

7 Naringenin 25.71 0.55

8 Luteolin 42.86 0.55

9 Isoliquiritigenin 47.14 0.55

10 Baicalein 67.14* 0.55*

11 Piperine 42.86 0.55

12 Verapamil 61.45 0.55
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of native protein Z-scores signify incorrect structures. 
Our predicted structure had a Z score of -4.61 which is 
not very good but is acceptable as is shown (Additional 
file 1: Fig. S1b). Our structure seemed to correlate with 
the one previously built by Cloete et al. For our study we 
tried to find both blind and site-specific docking scores 
for 210 plant compounds. Blind docking scans the entire 
protein target surface to find peptide ligand binding sites 
and modes. So in such a way the ligand binds to in any 
compatible locus.For site-specific docking the binding 

site of the protein is either found experimentally or pre-
dicted using software. For our study we found the prob-
able binding site using fpocket web server. The binding 
energies of the ligands were compared with piperine and 
verapamil. Sharma et al. 2010 reported that piperine was 
a powerful inhibitor of Rv1258c by site-specific docking 
using the Schrodinger software and in vitro tests. Cloete 
et  al. have also demonstrated piperine to be a potential 
Rv1258c inhibitor using docking experiments. In the 
study, it was found that in blind docking, the binding 
energy of piperine was −  9.3. Verapamil, a known syn-
thetic EPI of other efflux pumps showed a binding energy 
of −  8.4 (Kapp et  al. 2018). Based on this background, 
blind docking scores of −9.2 and −8.5 for piperine and 
verapamil, respectively, were obtained, which correlated 
with the findings of Cloete and coworkers. Site-specific 
docking of verapamil and piperine showed docking 
scores of −5.6 and −9.2, respectively, in the present study. 
Hence, piperine and verapamil were considered as con-
trols for our study. The present study showed that the 
top ten compounds in terms of binding energy exhibited 
better and/or comparable binding energy as compared 
to piperine and verapamil. This indicates that all these 
compounds exhibit remarkable biochemical interactions 
at the binding site of the protein. Therefore, it may be 
summarised that these 10 compounds may possess the 
potential to bind to the efflux pump with better affinity, 
and hence, by competitive binding they can increase the 
intracellular concentration of antibiotics.

Next, to optimize the development of potential EPIs, 
the physico chemical properties of these compounds are 
necessary. Therefore, these properties of the ten com-
pounds were carefully investigated using five available 
web servers. Nine out of the ten compounds followed all 
the Lipinski rules. After this, the critical pharmacokinetic 
parameters or ADMET properties were studied using 
four web servers. Before entering clinical trials, a drug 
candidate’s intolerable toxicity must also be investigated. 
A crucial factor in drug designing is a compound’s oral 
drug bioavailability. Because of their low bioavailability, 
most EPIs are not administered with drugs. We are yet to 
come across any research on the bioavailability and toxic-
ity of plant chemicals in the hunt for Rv1258c’s EPI. High 
oral bioavailability is a term used to describe when a 
medication can be administered orally in small doses and 
still reach the target and carry out therapeutic activity, 
reducing the risk of side effects in patients. Based on all 
the results, we see that most of the phytocompounds are 
not very toxic but two compounds—ellagic acid and bai-
calein exhibit the highest bioavailability scores (Table 4). 
According to the LD50 values also, these compounds are 
shown to be non-toxic, and they belong to toxicity classes 
4 and 5 respectively (Table 5).

Table 5 Oral toxicity scores of the ten phytocompounds

Sl. No Name of phytocompound LD50 
(mg/kg) 
(ProTox-II)

Toxicity class 
(ProTox-II)

1 N-transferuroyl-4’-O-methyldo-
pamine

500 4

2 Ellagic acid 2991* 4

3 Mollic acid glucoside 1500 4

4 Abyssinone II 1190 4

5 Glabridine 500 4

6 Chrysoeriol 4000 5

7 Naringenin 2000 4

8 Luteolin 3919 5

9 Isoliquiritigenin 3600 5

10 Baicalein 3919* 5

11 Piperine 330 4

12 Verapamil 108 3

Fig. 1 .

Fig. 2 .
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Therefore, from the 210 compounds that were 
screened, two phytocompounds—ellagic acid, and baica-
lein—show good docking scores, have excellent ADMET 
characteristics, and their bioavailability is superior to 
piperine and are non-toxic. Thus, our in silico study indi-
cates that these two compounds have no negative effects 
and have the potential to be an effective efflux pump 
inhibitor. Therefore, based on computer-based drug 
design methodology, we conclude that these two com-
pounds are possible inhibitors against Rv1258c. However, 
the stability of the ellagic acid and baicalein complex with 
pump requires molecular dynamics simulation followed 
by in  vitro experimentation. The present study could 
provide leads to new class of compounds which may be 
used EPI against Rv1258c like efflux pumps and might 
cause the reversal of the antibiotic resistant condition in 
tuberculosis.
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