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Abstract

In this study manganese peroxidase (MnP) enzymes from selected white-rot fungi were isolated and compared for
potential future recombinant production. White-rot fungi were cultivated in small-scale in liquid media and a
simplified process was established for the purification of extracellular enzymes.

Five lignin degrading organisms were selected (Bjerkandera sp., Phanerochaete (P.) chrysosporium, Physisporinus (P.)
rivulosus, Phlebia (P.) radiata and Phlebia sp. Nf b19) and studied for MnP production in small-scale. Extracellular MnP
activity was followed and cultivations were harvested at proximity of the peak activity. The production of MnPs
varied in different organisms but was clearly regulated by inducing liquid media components (Mn2+, veratryl
alcohol and malonate). In total 8 different MnP isoforms were purified.

Results of this study reinforce the conception that MnPs from distinct organisms differ substantially in their
properties. Production of the extracellular enzyme in general did not reach a substantial level. This further suggests
that these native producers are not suitable for industrial scale production of the enzyme. The highest specific
activities were observed with MnPs from P. chrysosporium (200 U mg-1), Phlebia sp. Nf b19 (55 U mg-1) and P.
rivulosus (89 U mg-1) and these MnPs are considered as the most potential candidates for further studies. The
molecular weight of the purified MnPs was estimated to be between 45-50 kDa.
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Introduction
At present lignocellulose is a major raw material for for-
estry, pulp and paper industry and the emerging second
generation biofuel production. Among cellulose and hemi-
cellulose, lignin is a major component of lignocellulosic
biomass and largely responsible for its strength. Inside the
Northern coniferous forest belt the importance of lignin
utilization is stressed in wood-based biorefineries due to
high amounts of lignin in softwoods (Li et al. 2009).
Lignin is a heterogeneous, branched and complex
polymer consisting of phenylalanine-derived aromatic
subunits (Whetten & Sederoff 1995). Because of its re-
calcitrance, lignin complicates the utilization of biomass
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polysaccharides in biorefineries and increases the energy
consumption in mechanical pulping (Jiang et al. 2008a).
In nature one group of organisms, the basidiomycetous
fungi, are able to effectively degrade lignin by employing a
family of lignin degrading enzymes. These organisms can
be divided into wood-colonizing white-rot fungi and soil
litter-decomposing fungi. Fungal attack on lignin is attrib-
uted to certain secreted nonspecific oxidoreductases,
which produce low molecular weight mediators able to in-
trude recalcitrant biopolymers. The family of extracellular
ligninolytic enzymes typically includes lignin peroxidases
(LiP, EC 1.11.1.14), laccases (EC 1.10.3.2), manganese per-
oxidases (MnP, EC 1.11.1.13), versatile peroxidases (VP,
EC 1.11.1.16) and other accessory enzymes.

Out of these enzymes MnP is thought to play the most
crucial role in lignin degradation, as it is found in all lig-
nin degrading fungi white-rot fungi. This heme protein
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belongs to the commonly occurring class II peroxidase
group in basidiomycetous fungi and has a highly specific
Mn2+ -binding site. In the binding site of classical long
MnPs there are three amino-acid residues (two Glu and
one Asp) while several fungal Mn2+ —oxidizing enzymes
with an additional tryptophan residue on the enzyme
surface have been found. These enzymes are called VPs
or hybrid MnPs, bearing resemblance to LiPs and able to
perform oxidation though long-range electron transfer as
well. The evolution of these class II peroxidases appears to
be closely related to each other and even consistent with
the sharp decline in coal accumulation rate during the
Permo-Carboniferous period. Lignin is the main precursor
for coal (Hofrichter et al. 2010; Floudas et al. 2012). MnP
catalyses the oxidation of Mn2+ —ions to highly reactive
Mn3+-ions. Chelated Mn3+ in turn act as low molecular
weight mediators that are able to attack phenolic struc-
tures. MnP is able to cause substantial depolymerization if
lignin in in vitro biomass treatments (Hofrichter 2002;
Hofrichter et al. 2001; Maijala et al. 2008).

Potential applications for MnP include biomechanical
pulping, pulp bleaching, dye decolorization, bioremedi-
ation and production of high-value chemicals from re-
sidual lignin from biorefineries and pulp and paper
side-streams (Maijala et al. 2008; Moreira et al. 2003;
Moreira et al. 2001; Xu et al. 2010a and 2010b; Paice
et al. 1993; Susla et al. 2008; Hofrichter et al. 1998; Sack
et al. 1997). Applications of MnP are limited due to slow
growth and low productivity of native enzyme producers
and lack of an efficient recombinant production process
(Hofrichter 2002; Jiang et al. 2008a).

The production of lignolytic enzymes and its regula-
tion has been intensively studied in various lignin de-
grading fungi (Bonnarme & Jeffries 1990; Hakala et al.
2006; Jiménez-Tobon et al. 2003; Kamitsuji ez al. 2004;
Lankinen et al. 2005; Martinez et al. 1996; Moilanen
et al. 1996; Nuske et al. 2002; Perie & Gold 1991; Palma
et al. 2000; Petruccioli et al. 2009; Schneegab et al.
1997; Swamy & Ramsay 1999; Steffen et al. 2002; Susla
et al. 2008; Silva et al. 2008; Sklenar et al. 2010; Singh
et al. 2011; Taboada-Puig et al. 2011; Vares et al. 1995;
Wang et al. 2001; Wang et al. 2008) and novel bacterial
strains (Bharagava et al. 2009; Mishra & Thakur 2010;
Yadav et al. 2011). Recombinant production has been
studied in filamentous fungi (Conesa et al. 2000; Irie
et al. 2001; Li et al. 2001; Mayfield et al. 1994; Stewart
et al. 1996), yeasts (Jiang et al. 2008a), bacterial
(Whitwam & Tien 1996) and insect (Johnson et al. 1992;
Pease et al. 1991) hosts with successful production but
modest yields of active enzyme. MnP from P. chrysospor-
ium has been the target of most recombinant studies,
which however suffer from unsuccessful posttranslational
protein modification and the need for exogenous heme in
high concentrations (Jiang et al. 2008a).
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Furthermore, industrially robust enzymes need to have
high stability in demanding process conditions which
promotes the need for screening novel enzymes and en-
zyme modification. Multiple crystal structures and mo-
lecular models based on gene sequences have been
published for MnP and VP (e.g Sundaramoorthy et al.
1997; Sutherland et al. 1997 and Moreira et al. 2005).
The effects of disulfide bonds and calcium-ions on the
stability of MnP have been studied by Reading et al
(2001) and Sutherland et al. (1997), respectively. As a re-
sult of enzyme modification, a mutant MnP with one
additional disulfide bond had increased stability in alka-
line (pH 8) conditions (Reading et al. 2001). Another
strategy is to screen for native MnPs with improved
properties regarding thermostability, specific activity or
pH optimum and stability (Petruccioli et al. 2009 and
Urek & Pazarlioglu 2004). Increased specific activity (U
mg-1 protein) of the selected protein would also increase
the profitability of the recombinant process. Independ-
ent of the strategy the bottleneck is the establishment of
an efficient recombinant production.

The aim of the present study was to screen MnPs from
promising candidates of lignin degrading fungi for future
recombinant production. Specific activities of MnPs were
determined after cultivation and purification procedures.
Isoforms of MnP from different organisms differ substan-
tially and screening for novel MnP enzymes is beneficial for
designing applications and developing a production process
capable of producing the enzyme at an economically feas-
ible cost. However high-throughput screening is challen-
ging due to low enzyme vyields and diverse regulation of
MnP isoenzymes in different native hosts.

Materials and methods

Fungi and culture conditions

White-rot fungi strains Bjerkandera sp. BEL LLP4
(D-00810) and P. radiata Hatakka & Pirhonen strain 79
(ATCC 64658, D-84236) were ordered from the VTT
Technical Research Centre of Finland culture collection,
Finland. Strains P. chrysosporium (ATCC 24725, DSM
6909), Phlebia sp. Nf b19 (ATCC 201144, DSM 11239)
and P. rivulosus T241i (DSM 14618) were ordered from
the Leibniz institute DSMZ-German collection of micro-
organisms and cell cultures GmbH, Germany. Phlebia
sp. Nf b19 was originally identified as Nematoloma fro-
wardii species but reassigned to the family Corticiaceae
and genus Phlebia based on a molecular level study by
Hildén et al. (2008).

The fungi were maintained on solid agar plates. The
agars used were 0.4% potato 2% dextrose agar (Difco,
USA) for P. radiata, 3% malt extract-peptone agar
(Merck, Germany) for P. chrysosporium, Phlebia sp. Nf
b19 and P. rivulosus and 3% malt agar (Difco, USA) for
Bjerkandera sp. The plates were incubated for 2—-10 days
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until covered with mycelium. Plates were stored at 4°C
and replated monthly.

The inocula were prepared by suspending the mycelia
from one plate to sterile 0.9% (w/v) Sodium chloride.
One plate was used to inoculate two parallel fungi
cultivations.

The production of extracellular MnP in each organism
was followed in two parallel cultivations in 1 L shake flasks
containing 300 mL of liquid media with 90 rpm agitation.
Cultivation temperatures were 37°C for P. chrysosporium,
25°C for Phlebia sp. Nf b19 and 28°C for all other white-
rot fungi strains. P. radiata was grown in low-nitrogen
ADMS medium pH 4.5 (Hatakka & Uusi-Rauva 1983)
with 1% glucose, 0.05% (w/v) Tween 80 and 1 mM veratryl
alcohol (VA, 3,4-dimethoxybenzyl alcohol). Supplements
180 pM Mn2+ and 10mM Sodium malonate were added
on the 4th day. P. rivulosus was grown in low-nitrogen
ADMS medium pH 4.5 (Hatakka & Uusi-Rauva 1983) with
1% glucose and 0.05% (w/v) Tween 20. Supplements
24 pM Mn2+ and 0.36 mM VA were added on the 4th
day. P. chrysosporium was grown in Kirk’s medium pH 4.5
(Urek & Pazarlioglu 2004; Tien & Kirk 1988 and Bonnarme
& Jeffries 1990) with 1% glucose and 0.05% (w/v) Tween
80. Supplements 728 uM Mn2+ and 0.36 mM VA were
added on the 4th day. Bjerkandera sp. was grown in Kirk’s
medium pH 4.5 (Palma et al. 2000) with 1% glucose and
0.05% (w/v) Tween 80, 235 uM Mn2+ and 0.36 mM VA.
Phlebia sp. Nf b19 was grown in a glucose-yeast extract
medium pH 4.5 (Nuske et al 2002) with 0.5% glucose,
0.03% yeast extract and 200 UM Mn2+. Cultivations were
continued until extracellular MnP activity was detected and
it started to decline.

Sampling

1mL samples were taken every 24 h from each flask.
Samples were centrifuged to remove cellmass (16000 x
g, 4°C). The supernatant was used for determination of
MnP activity and glucose and total protein concentra-
tions. All of the cultivations were performed in duplicate
and the presented results are average values.

Enzyme assay and analytical procedures

Glucose concentration during cultivation was deter-
mined using the YSI 2700 SELECT™ (YSI limited, UK,
Hampshire) biosensor.

MnP activity was determined spectrophotometrically at
270 nm by following the formation of Mn3+ —malonate
complex at pH 4.5 in 50 mM sodium malonate buffer with
0.5 mM MnSO4. The reaction was initiated by adding
H202 to the final concentration of 0.1 mM (Wariishi
et al. 1992). The reaction was followed for 30 sec at room
temperature. AAbs min-1 was converted to U L-1 using
an extinction coefficient of 11590 M-1lcm-1. Genesys
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10UV spectrometer (Thermo Scientific, USA) was used in
all the measurements with semi-micro 1.4 mL UV quartz
cuvettes (Sigma-aldrich, Germany)

Total protein was determined with the Bio-Rad pro-
tein Assay (USA) using bovine serum albumin (BSA) as
a standard. Measurements were made with Genesys
10UV spectrometer (Thermo Scientific, USA) at 595 nm
wavelength.

Protein expression and purity was followed using so-
dium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) with silver nitrate staining. Ready-made Bio-
Rad (USA) ready GelTM precast gels (12% Tris—HCI)
were used with Bio-Rad (USA) prestained low range pro-
tein standards.

Purification of manganese peroxidases

Cellmass was separated from the culture fluids by centri-
fugation at 16000 x g, 4°C (Avanti ] series centrifuge,
Beckman Coulter Inc, USA). Supernatant was then fil-
tered through a Whatman grade 1 filter paper (11pm,
Whatman, UK). Filtrate was then stored in -20°C until
further processing.

Concentration of the culture fluids from the screening
cultivations was done by using Vivaspin 20 centrifugal
concentrators with 10 kDa cut-off membranes (GE
Healthcare, USA and Sartorius Stedim Biotech, Germany).
Crude culture liquids were concentrated approximately
tenfold by volume. Megafuge 1.0R (Heraeus, England) was
used for centrifugation at 3400 x g, 4°C. Diafiltration was
performed in Vivaspin tubes by filtering 20 mM Bis-TRIS-
propane buffer (pH 6.2) through the membrane (three
times the volume of the concentrate).

AKTAavantTM liquid chromatography system (GE
Healthcare, USA) equipped with a strong anion ex-
change column (HiScreenTM CaptoTM Q, GE Health-
care, USA) was used for protein separation. The outflow
was monitored at two wavelengths: 280 nm for protein
and 405 nm for hemeprotein detection. The column was
first equilibrated with 20 mM Bis-TRIS-propane buffer
(pH 6.2) and proteins were eluted with a linear gradient
of 0—-1 M NaCl in the same buffer. 2 mL fractions were
collected during the elution phase. The fractions were
assayed for MnP activity and total protein. Peaks were
pooled separately and stored at —20°C.

Results

MnP production in selected white-rot fungi

The activity (U 1-1) of MnP enzyme produced and the
time period it took to reach the maximal activity varied
greatly between the selected white-rot fungi. A unifying
trend of accelerated glucose consumption just before
and during MnP production was observed in these batch
cultivations (Figure 1A & 1B). The MnP peak timing
and maximal activity varied between 7-21 days and
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Figure 1 Glucose consumption (dotted line) and MnP activity (solid line) by white-rot fungi during 300 mL batch cultivations. Each
strain was cultivated in specific conditions and media described in the materials section. Values are calculated averages of two parallel
cultivations. Standard deviation of MnP activity in parallel cultures is on average +40 uL’. Bjerkandera sp. (A, blue and red triangles),
Phanerochaete chrysosporium (A, blue and red circles), Physisporinus rivulosus (A, blue and red squares), Phlebia radiata (B, blue and red triangles),
Phlebia sp. Nf b19 (B, blue and red circles). Harvesting point is designated by the end of sampling.
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100-800 U I-1, respectively. Fastest growing white-rot
fungus in these experiments was Bjerkandera sp., which
also produced the highest activities. However, the MnP
activity of Bjerkandera sp. increased and subsequently
declined very sharply. These cultures were harvested 6
days after the MnP activity peak, which may have resulted
in inactivated protein and lowered specific activity.

Purification of MnP isoenzymes from crude culture
filtrates

Crude culture filtrates were concentrated and purified in a
rapid purification scheme described in the materials sec-
tion. Based on the SDS-PAGE gels (Figure 2A-E) MnP
was the predominant protein produced in most of the cul-
tures and highly purified in the pooled anion exchange
fractions (Figures 3, 4, 5, 6, 7). In the Phlebia sp. Nf b19
culture supernatant and concentrate, a larger enzyme
(around 70 kDa) was the predominant one. Based on the
size, this is probably a laccase. Loss of MnP activity was
high during the purification process. MnP activity was lost
especially in the concentration step, but this is not relevant
for the determination of specific activity. The role of en-
zyme inactivation in the purification procedure is mini-
mized due to low kept temperatures (4°C) during each
step. After the strong anion exchange (Mono Q column)
one MnP isoenzyme for Bjerkandera sp. (Figure 3), Phle-
bia sp. Nf b19 (Figure 7) and P. rivulosus (Figure 5); two
MnP isoenzymes for P. chrysosporium (Figure 4) and pos-
sibly three isoenzymes for P. radiata (Figure 6) were
detected. All of the MnP active fractions showed absorb-
ance peaks in the 280 nm wavelength for protein and in
the 405 nm wavelength for the heme containing protein.
Wavelenght 405 nm could easily be used for selecting
fractions likely to show MnP activity. MnP proteins were
eluted between 175 and 320 mM NaCl concentrations.

The molecular weight of the MnPs was between 45
and 50 kDa (Table 1). Specific activities of the MnPs
were calculated on the basis of the activity measure-
ments and measured total protein in the pooled active
fractions. P. chrysosporium MnP1 had the highest spe-
cific activity (200 U mg-1). The second highest specific
activity was observed for P. rivulosus (89 U mg-1). Phle-
bia sp. Nf b19 MnP had the specific activity of 55 U mg-
1. Rest of the MnP isoenzymes had a specific activity
below 40 U mg-1 (Table 1).

Preliminary results of in vitro enzymatic processing of
milled pinewood sawdust with crude MnP concentrates
showed up to 17% (data not shown) decrease in Klason
lignin content and benefitted from the use of co-
oxidants (Tween 80 and glutathione) in some cases.

Discussion

These results show that a simplified purification process is
capable of producing comparable specific activity results
for the screening of novel MnP enzymes. Culture super-
natant concentration and anion exchange chromatography
using a Mono Q column was enough to purify the enzyme
to a high degree. Although the initial enzyme amounts
were low and the losses during concentration were quite
high, these results provide a basis for enzyme ranking.
Based on these results there are significant differences in
the specific activities of MnP enzymes from different
white-rot fungi. Out of the white-rot fungi used in this
study P. chrysosporium, P. rivulosus and Phlebia sp. Nf
b19 MnPs were the most promising. For P. rivulosus and
Phlebia sp. Nf b19 these results are also consistent with
the MnP activity and protein absorbance (280 nm) ratio
in anion exchange chromatography (Table 1). The MnP
activity (U 1-1) of Bjerkandera sp. had come down over
70% at the point of harvesting. If the lost activity is
accounted as inactivated MnP in the total protein
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of MnP from Bjerkandera sp. Dotted line is the absorbance at
wavelength 208 nm; Short dash line is the absorbance at
wavelength 405 nm; Long dash line is the concentration of the
eluent in percentage.
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Figure 4 Anion exchange chromatogram from the purification
of MnP from Phanerochaete chrysosporium. Symbols as in
Figure 2.
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of MnP from Physisporinus rivulosus. Symbols as in Figure 2. Figure 7 Anion exc.hange chromatogram from the purification
. J of MnP from Phlebia sp. Nf b19. Symbols as in Figure 2.

measurement, the specific activity could be at least three-
fold higher. In addition to specific activity the stability of
the purified MnP enzymes towards temperature, pH and
inactivating compounds needs to be studied before candi-
dates for recombinant production are selected. The
reported specific activities are significantly lower than
those previously reported for P. chrysosporium by Urek
et al. (2004), Bjerkandera sp. by Palma et al. (2000) and
Taboada-Puig et al. (2011) and for Phlebia sp. Nf b19 by
Schneegal et al. (1997)

The production of MnP by native producers, as also
observed in this study, is limited due to relatively low
maximal enzyme activities, slow growth and the sensitivity
of white-rot fungi towards shear forces, difficult induction
strategies and low adaptivity to submerged fermentations.
In this study MnP was in most cases induced with several
supplements (Mn2+, VA, Tween, Sodium malonate).
However, as reported by Hakala et al. (2006), the regula-
tion of different MnP isoforms can be largely dependent
on the inducing compounds and nutrient (nitrogen and
carbon) sources and amounts. This suggests that novel
isoforms would be found by changing the culture condi-
tions. Mn2+-ions are typically necessary inducers for
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Figure 6 Anion exchange chromatogram from the purification
of MnP from Phlebia radiata. Symbols as in Figure 2.
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MnP production although repressive effects of Mn2+-ions
have also been reported (Martinez et al. 1996). Although
high activity level was not the focus in this study, the cul-
ture conditions and inducing strategies (see the materials
section) for this study were selected on previous literature
to maximize enzyme production. Specified effects of indi-
vidual inducing components cannot be separated for any
strain, but clearly no MnP was produced before inducing
components were added.

In recombinant MnP processes with Pichia pastoris
(Jiang et al. 2008b), Aspergillus oryzae (Stewart et al.
1996), Aspergillus niger (Conesa et al. 2000) and Echeri-
chia coli (Whitwam et al. 1995; Whitwam & Tien 1996)
production of high amounts of active protein has been a
problem. These processes suffer from incorrect protein
folding, insufficient heme synthesis and heme incorpor-
ation. However, MnP yield might be significantly increased
with the right combination of recombinant enzyme, pro-
duction host, promoter system, protein secretion system
and optimized process conditions. Jiang et al (2008b) also
suspected that P. pastoris lacks the proper heme escorts
and reseptors to transport exogenous heme to the site of
MnP synthesis. This problem might be relieved by insert-
ing the genes for such heme transport from e.g Shigella
(S.) dysenteriae (Mills & Payne 1995). S. dysenteriae is a
known pathogen causing shigellosis, which would make
the GMO rating of the recombinant strain difficult. On
the other hand P. pastoris synthesizes large amounts of a
homologous heme-containing catalase protein under
alchohol oxidase (AOX) promoted recombinant expres-
sion. Thus gene expression under AOX promoter might
be beneficial for MnP production due to the added need
for heme synthesis inside the cells. Coprinus cinereus pro-
duces a class II excreted fungal peroxidase (CiP) that read-
ily oxidizes phenols, but is unable to oxidize veratryl
alcohol or Mn2+-ions (Hofrichter et al. 2010). This en-
zyme is successfully produced in a recombinant process
using P. pastoris (Kim et al 2009a) with high
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Table 1 Purification of MnP isoenzymes from Bjerkandera sp. (A), Phanerochaete chrysosporium (B), Physisporinus

rivulosus (C), Phlebia radiata (D) and Phlebia sp. Nf b19 (E)

Activity [U] Protein [mg] Specific activity [U/mg] Activity protein  Yield [%] Purification fold Size of MnP [kDa]
absorbance ratio
[UL" absorbance
at 280nm"]
A
Culture fluid 380 29 133 100 1.0
Ultrafiltration 19.8 26 76 522 06
Mono Q BSMnP1 153 05 323 18 40.2 24 45
B
Culture fluid 387 1447 26.7 100 1.0
Ultrafiltration 6.9 0403 17.0 17.7 06
Mono Q PCMnP1 1.1 0.005 200.5 13 28 7.5 45
Mono Q PCMnP2 04 0.013 33.0 8 1.1 12 45
C
Culture fluid 36.6 2685 13.6 100 1.0
Ultrafiltration 7.7 0.278 276 20.9 20
Mono Q PRMnP1 23 0.026 88.6 122 6.2 6.5 50
D
Culture fluid 520 4.669 1.2 100 1.0
Ultrafiltration 24.6 2713 9.1 472 0.8
Mono QPradMnP1 5.8 0.245 23.7 33 1.1 2.1 50
Mono Q PradMnP2 4.0 0.199 19.9 21 7.6 1.8 50
Mono Q PradMnP3 7.2 0234 30.8 33 138 2.8 50
E
Culture fluid 7.1 0671 10.6 100 1.0
Ultrafiltration 34 0511 6.6 46.9 0.6
Mono Q NFMnP1 0.7 0.012 55.2 67 93 52 49

productivities (peroxidase activity over 1200 U ml-1 and
total protein over 1.6 g 1-1) and is also sold as a commer-
cial enzyme by Novozymes (Baylase®). The productivity of
this heme-containing peroxidase was optimized by host
and expression promoter selection (Kim et al 2009b).
Highest productivities were obtained by using the AOX
promoter with a fast methanol utilization strain (Mut+) of
P. pastoris. This supports the theory, that inducing the
methanol utilization pathway in a production host can pro-
mote the recombinant production of heme-containing per-
oxidases. Commercially available MnP (from Phlebia sp. Nf
b19) and VP (from Bjerkandera adusta) from Jena Bio-
science GmbH are native enzymes and overly expensive for
any kind of industrial use.

In this study several well known MnP enzymes were
compared. MnP and laccase and their regulation in
P. rivulosus has been well characterized by Hakala et al.
(2005 & 2006). The Differential regulation of MnP iso-
forms in P. rivulosus was also noted in these articles. In
this study only one MnP from P. rivulosus is character-
ized, but this may very well be a group of MnP isoen-
zymes with approximately the same isoelectric points

and molecular sizes. In characterization studies by Hil-
dén et al. (2008), the MnP2 enzyme from Phlebia sp. Nf
b19 showed a 96% amino acid identity to the MnP2 en-
zyme of P. radiata in the primary structure. In this study
the specific activities and sizes of the MnP enzymes pro-
duced by these related fungal strains were in the same
range. Even in growth and MnP production these strains
showed similarities (extremely slow growth and late
onset of MnP production). Hildén et al. (2005) describe
two MnP enzymes from P. radiata that are different in
their primary structure, intron amount, length and crys-
tal structure. The other isoenzyme being structurally
related to LiP, but having an alanine residue instead of
tryptophan while still having a conserved Mn2+-binding
site. In this study three MnPs from P. radiata were sepa-
rated, but they seemed to be highly similar in size and
specific activity for Mn2+ oxidation.

Many technical applications for MnP have been
reported with promising results. The utilization of the
enzyme is still dependent on a cost-effective recombin-
ant production process and possibly the discovery of
more robust novel isoenzymes or modifications of the
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currently known ones. Furthermore, optimization of en-
zymatic treatment processes for various technical lignins
(Vishtal & Kraslawski 2011), paper pulps (Maijala et al.
2008; Xu et al. 2010) and organopollutants (Sack et al.
1997) with proper process conditions and co-oxidants
will probably increase the interest in MnP. Delignification
of pinewood sawdust using a MnP treatment in this study
was relatively inefficient. The use of several co-oxidants
and other enzymes involved in biological ligninolysis may
help to achieve more thorough enzymatic delignification
demonstrated by many MnP producing and LiP-negative
white-rot fungi (Hammel & Cullen 2008). In previous la-
boratory experiments by Hofrichter et al. (1998) and
Kapich et al. (1999) Mineralization and solubilization of
synthetic (14C-labeled) large molecular weight lignin by
MnP has been reported. These and various other studies
suggest that isolated MnP enzymes can be used to
delignify biomasses. However, for now the utilization of
class II peroxidases to degrade polluting substances in
soils is technically more appealing.
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