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Abstract 

The biosynthetic process of selenium nanoparticles (SeNPs) by specific bacterial strain, whose growth directly affects 
the synthesis efficiency, has attracted great attentions. We previously reported that Bacillus paralicheniformis SR14, 
a SeNPs-producing bacteria, could improve intestinal antioxidative function in vitro. To further analyze the biological 
characteristics of SR14, whole genome sequencing was used to reveal the genetic characteristics in selenite reduc-
tion and sugar utilization. The results reviewed that the genome size of SR14 was 4,448,062 bp, with a GC content 
of 45.95%. A total of 4300 genes into 49 biological pathways was annotated to the KEGG database. EC: 1.1.1.49 (glu-
cose-6-phosphate 1-dehydrogenase) and EC: 5.3.1.9 (glucose-6-phosphate isomerase), were found to play a potential 
role in glucose degradation and EC:2.7.1.4 (fructokinase) might be involved in the fructose metabolism. Growth profile 
and selenite-reducing ability of SR14 under different sugar supplements were determined and the results reviewed 
that glucose had a better promoting effect on the reduction of selenite and growth of bacteria than fructose, sucrose, 
and maltose. Moreover, RT-qPCR experiment proved that glucose supplement remarkably promoted the expressions 
of thioredoxin, fumarate reductase, and the glutathione peroxidase in SR14. Analysis of mRNA expression showed 
levels of glucose-6-phosphate dehydrogenase and fructokinase significantly upregulated under the supplement 
of glucose. Overall, our data demonstrated the genomic characteristics of SR14 and preliminarily determined that glu-
cose supplement was most beneficial for strain growth and SeNPs synthesis.

Keypoints 

1.	 Whole genome sequencing was used to reveal the genetic characteristics of SR14 in selenite reduction and sugar 
utilization.

2.	 Supplementing glucose had the best promoting effect on growth and selenite reduction of SR14, and the effect 
was better than supplementing sucrose, fructose, or maltose.

3.	 EC:1.1.1.49 (glucose-6-phosphate 1-dehydrogenase) and  EC:2.7.1.4 (fructokinase) might be associated 
with the metabolic process of SR14.
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4.	 SR14 might rely on  multiple enzymes, such as  thioredoxin, fumarate reductase, and  glutathione peroxidase, 
to reduce selenite when supplementing with glucose.

Keywords  Bacillus paralicheniformis, Selenite reduction, Whole genome sequence, Sugar supplements

Introduction
Selenium is an essential trace element that incorpo-
rates into selenoproteins as selenocysteine representing 
the most important part of their active center (Khurana 
et  al. 2019). Selenium has a narrow threshold between 
therapy and toxicity, whereas the selenium nanoparticles 
(SeNPs) possess remarkably lower toxicity than selenate, 
selenite and organic selenium (Wang et al. 2007). Several 
investigations have demonstrated that biogenic SeNPs 
have antimicrobial (Vaquette et  al. 2020), antioxidant 
(Ge et al. 2022), anticancer (Wang et al. 2022a) and hor-
mone secretion promoting properties (Ojeda et al. 2022). 
SeNPs-producing microorganism has attracted increas-
ing attention in the recent years. Bacillus species, with 
strong environmental adaptability and prebiotic function, 
have become the suitable bioreactor to synthesize SeNPs 
(Ashengroph and Hosseini 2021; Hashem et al. 2021; Wu 
et al. 2016).

The residue of selenite and the content of SeNPs in 
culture medium are closely associated with microbial 
activity, including growth rate, viable count and metabo-
lism-related enzyme expression levels. Different type of 
sugar supplements played a crucial role in bacterial growth 
and high-value-added product biosynthesis (Hammi et al. 
2016; Wang et al. 2018a). Guo et al. devised a new strat-
egy to produce the isomaltulose by Corynebacterium glu-
tamicum IS7, where the sucrose component was used as 
the substrate and the monosaccharides (glucose and fruc-
tose) were used as the energy source for strain growth 
(Guo et al. 2022). Meanwhile, current findings suggest that 
various enzymes in bacteria have been involved in SeNPs 
synthesis. Under aerobic conditions, enzymes such as glu-
tathione reductase (Wadhwani et  al. 2016), thioredoxin 
reductase (TrxR) (Hunter 2014), fumarate reductase (Song 
et  al. 2017), and sulfite reductase (Wang et  al. 2022b) 
have so far been reported to participate in the selenite 
reduction.

Whole genome sequencing is now available for many 
microbial species to assess their safety traits (Salvetti 
et  al. 2016), evolution traits (Zhang et  al. 2016), and 
metabolic function (Xu et al. 2017). Jia et al. preliminary 
revealed that the reduction of selenite by Bacillus subtilis 

168 was mediated by multiple pathways both in vivo and 
in vitro (Jia et al. 2022). Nevertheless, the mechanism of 
selenite reduction under different fermentation condi-
tions was not elucidated.

B. paralicheniformis SR14, a strain that we isolated 
before, possessed excellent selenite resistance and SeNPs 
producing ability (Cheng et  al. 2017; Xiao et  al. 2019). 
The present study aimed to explore the genes related to 
selenite reduction and sugar utilization in SR14 by whole 
genome sequencing analysis. Herein, we (i) annotated the 
predicted genes using Kyoto Encyclopedia of Genes and 
Genomes (KEGG) databases; (ii) characterized the differ-
ence in the selenite reducing ability under different sugar 
supplements; and (iii) verified the potential functional 
genes by RT-qPCR. Hence, it is important to determine 
the optimal sugar supplement for the growth of the strain 
to improve the SeNPs synthesize ability and reveal the 
potential enzymes in specific bacteria strain.

Materials and methods
Bacterial strain and chemicals
B. paralicheniformis SR14, a selenite-tolerated bacte-
rial strain (CGMCC No. 13908), was identified and kept 
in our laboratory. Yeast extract and tryptone were pur-
chased from OXOID (Hampshire, UK). Phosphate buffer 
powder (PBS), glucose, fructose, sucrose, maltose, NaCl, 
K2HPO4, and MgSO4 were purchased from Sinopharm 
Chemical Reagent Co., Ltd. (Shanghai, China). Sodium 
selenite (CAS: 10,102-18-8) was purchased from Sigma-
Aldrich (St. Louis, MO, USA). TRIzol reagent was pur-
chased from Invitrogen (Waltham, MA, USA).

Microorganism cultivation and determination of selenite 
contents
The cultivation process of SR14 was designed according 
to the method we described before with minor modifica-
tions (Cheng et al. 2017). Briefly, a single colony of SR14 
was initially cultured in LB medium at 37  °C overnight. 
Next, 500 μL of the seed fluid was inoculated into 50 mL 
of different cultivation culture groups. The minimum 
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broth medium was used as the negative control (NC). 
Detailed grouping information was listed in Table 1.

Whole genome sequencing, assembly, and annotation
Cultures of SR14 in grown to the exponential phase 
without the presence of selenite was collected and cen-
trifuged at 4 °C at 5000 ×g for 5 min. The genomic DNA 
was extracted, qualified, and determined. The whole 
genome shotgun strategy was used to build libraries 
with different inserted fragments at Personalbio Co., Ltd 
(Shanghai, China). The second-generation sequencing 
was performed on the Illumina Novaseq 6000 platform. 
The third-generation sequencing was performed on the 
Oxford Nanopore ONT. FastQC strategy was used to 
control the quality of data (Patel and Jain 2012).

Selenite reducing capacity and strain growth ability
The effect of different kinds of sugar supplement on 
the growth of SR14 was determined without the pres-
ence of sodium selenite. The remaining levels of sel-
enite were determined using ICP-MS (Thermo Fischer 
Scientific, Waltham, MA, USA). Briefly, the culture 
medium was filtered through a 0.22 µm aqueous nylon 
flter membrane. Then the signal intensity of 78Se was 
subsequently determined analytically in KED mode and 
compared with the sodium selenite standard solution.

RT‑PCR assay
RNA samples of SR14 from different groups were 
extracted using TRIzol reagent. The quantity and qual-
ity of RNA were determined by NanoDrop 2000 spec-
trophotometer (Thermo Fisher Scientific, MA, USA). 
After examination of RNA purity and concentration, 
2  μg of RNA was used as a template to reverse tran-
scribe to cDNA by using M-MLV Reverse Transcriptase 
Kit. qPCR analysis was performed using the SYBR 
Green PCR Master Mix with the ABI Step-One PlusTM 
Real-Time PCR System (Applied Biosystems, Waltham, 

MA, USA). The mRNA relative expression was calcu-
lated using the 2−ΔΔCt method. Primers were listed in 
Table 2.

Table 1  Group assignment

Assignment Abbreviation Component

Common components Different sugar sources

Control group Con 10 g/L tryptone + 10 g/L yeast extract + 1 g/L K2HPO4 + 5 g/L NaCl + 1.5 g/L MgSO4 –

Glucose group Glu 20 g/L glucose

Fructose group Fru 20 g/L fructose

Sucrose group Suc 20 g/L sucrose

Maltose group Mal 20 g/L maltose

Table 2  Primer sequences for RT-PCR

Gene Sequence (5′ → 3′)

Fumarate hydratase Forward: AAA​ATC​GGC​CGC​ACT​CAT​TT
Reverse: GAT​GGC​AAG​ATC​GCG​GAT​TT

Glucose-6-phosphate dehydro-
genase

Forward: CAG​GGG​ATT​TGG​CAA​AAC​
GA
Reverse: TCG​AAA​CCG​ATT​GCT​GTA​CG

Glutathione peroxidase Forward: ATC​AAA​TCC​ACC​CGC​TGT​TC
Reverse: TGG​ATT​GGT​TTG​CGG​TGA​AA

Maltose-6′-phosphate glucosidase Forward: CCC​GGG​GAT​TGT​ATT​GAT​GC
Reverse: GAA​AAC​GCC​TCT​TCC​GGA​TC

Thioredoxin reductase Forward: GCC​GGT​ACT​TGA​AGA​GCT​
TG
Reverse: GCC​GAC​AGA​TGT​TTC​AAC​CA

Fructokinase Forward: CAG​TCG​GTA​CAG​GAA​TCG​
GA
Reverse: CCC​GAT​GCC​ATT​CCT​TCA​AG

16S Forward: ACT​CCT​ACG​GGA​GGC​AGC​A
Reverse: GGA​CTA​CHVGGG​TWT​
CTAAT​

Table 3  Genome statistics of Bacillus paralicheniformis SR14

Attributes Values

Length (bp) 4,448,062

GC content (%) 45.95

Sequence type circular

ORF numbers 4560

ORF total length (bp) 3,902,469

ORF/Genome (coding percentage, %) 87.73

tRNA numbers 81

rRNA numbers 24

ncRNA numbers 105

CRISPR repeats 2
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Statistical analysis
All data were expressed as means ± SD. One-way analy-
sis of variance (ANOVA) followed by a Tukey multiple 
comparison test was used to determine the statisti-
cal significance for multiple comparisons. Differences 
between groups were considered statistically significant 
at *P < 0.05.

Results
Whole genome sequencing and assembly of B. 
paralicheniformis SR14
Whole-genome sequencing using Illumina NovaSeq 
and Oxford Nanopore ONT was established to generate 
insight into the mechanism of selenite reduction by SR14. 
As shown in Table 3, a total length of 4,448,062 bp, with a 
GC content of 45.95%, were predicted in the genome.

We integrated the genome sequence, gene prediction 
and non-coding RNA prediction information into stand-
ard GenBank format file. As detailed in Fig. 1, the results 

indicated that a circular plot of the genome, including 
the number of bases, GC content, GC skew, and loca-
tion of all annotated open reading frames (ORFs) sorted 
by the clusters of orthologous gene (COG) category and 
colored.

Analysis of sugar utilization and selenite reducing 
characteristics in genome of B. paralicheniformis SR14
To better comprehend the sugar and selenite metabolic 
pathways of SR14, we further annotated a total of 4300 
genes into 49 biological pathways in the KEGG database 
(Fig.  2), of which 432 genes were assorted as carbohy-
drate metabolism genes, and 149 genes were assorted as 
energy metabolism genes.

Genes associated with the specific metabolic pro-
cess were crucial for biological process category. There 
were 179 genes annotated with sugar metabolism in 
the SR14 genome, among which 47 were concerned 
with the maltose metabolism, 69 were concerned with 
fructose metabolism, 60 genes were associated with 

Fig. 1  Circular map of B. paralicheniformis SR14 genome. From the center to outside are the scale, GC skew, GC content, the COG of each CDS, 
the positions of CDS, tRNA, and rRNA, respectively
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sucrose metabolism, and 3 genes were associated with 
maltose metabolism. As shown in Additional file 1: Fig. 
S1a, pentose phosphate pathway related genes, such 
as EC: 1.1.1.49 (glucose-6-phosphate 1-dehydroge-
nase) and EC: 5.3.1.9 (glucose-6-phosphate isomerase), 
were found to play a potential role in glucose degrada-
tion. Meanwhile, EC: 2.7.1.4 (fructokinase) might be 
involved in the fructose metabolism (Additional file 1: 

Fig. S1b and S1c). Subsequently, glucose, fructose, 
sucrose, and maltose were selected for the growth pro-
file and selenite-reducing experiment.

Furthermore, a total of 8 genes possibly played a 
role in the selenocompound metabolism process, such 
as EC: 6.1.1.10 (methionyl-tRNA synthetase) and EC: 
1.8.1.9 (TrxR), were further screened (Fig. 3).

Fig. 2  Circular map of B. paralicheniformis SR14 genome. From the center to outside are the scale, GC skew, GC content, the COG of each CDS, 
the positions of CDS, tRNA, and rRNA, respectively
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Growth profile and selenite‑reducing ability of B. 
paralicheniformis SR14 under different sugar supplement 
conditions
As shown in Fig.  4b, the colonies of SR14 turned red 
with the addition of sodium selenite, suggesting that 
SR14 exhibited selenite tolerance and elemental selenium 
reduction abilities. After cultivating with the presence of 
5 mg/L sodium selenite, the color of broth in five differ-
ent groups was all changed to red (Fig. 4c and d).

The effect of different kinds of sugar on the growth of 
SR14 was determined. The results revealed that sugar 
supplement promoted the growth of SR14, with glucose 
being used for optimal choose (Fig.  4e). ICP-MS analy-
sis indicated that in the Glu group and Suc group, the 
sodium selenite was totally reduced at 60  h and 72  h 
after inoculation, respectively. Nevertheless, even after 
72 h of fermentation, there was still residual sodium sel-
enite (93% for NC group; 59% for Con group; 53% for 
Mal group; and 36% for Fru group) in the broth of other 
groups (Fig. 4f ).

Analysis of the mRNA abundance of selected genes 
under different sugar supplementary
To verify the relative expression of selenite-reducing 
genes revealed in the genome-seq results, the mRNA 
abundance of the selenite reductase, including TrxR, 
fumarate reductase, and glutathione peroxidase, was 
assessed. As shown in Fig.  5, glucose supplement sig-
nificantly upregulated the expressions of TrxR, fuma-
rate reductase, and the glutathione peroxidase by 
153.9-fold (P < 0.0001), 20.2-fold (P < 0.0001), and 10.7-
fold (P < 0.001). Furthermore, sucrose supplement upreg-
ulated the expressions of TrxR by 70.7-fold (P < 0.0001).

As shown in Fig. 6, the mRNA expression of glucose-
6-phosphate dehydrogenase were significantly upregu-
lated under the supplement of glucose by comparison 
with three other groups (79.3-fold). Meanwhile, glucose 
supplement significantly increased the mRNA expression 
of fructokinase. Nevertheless, all of four kind of sugar 
supplements did not significantly affect the expression of 
maltose-6′-phosphate glucosidase.

Fig. 3  Potential pathway of selenocompound metabolism process. The green boxes represented the key genes contained in SR14
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Fig. 4  Growth and selenite reduction analysis of SR14. a image of SR14 colony on LB medium plate without selenite. b image of SR14 colony on LB 
medium plate with 2 mM selenite. c images of five different kinds of fluid medium before fermentation. d images of five different kinds of fluid 
medium after fermentation. e growth curves of SR14 in different mediums. f selenite reduction results SR14 in different mediums (n = 3)
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Discussion
B. paralicheniformis SR14, a selenite-tolerated and poly-
saccharide-producing strain, exhibited great antioxidant 
properties in vitro (Cheng et  al. 2017; Xiao et  al. 2019). 
To further investigate the possible mechanism on its sel-
enite reduction, the genome-wide analysis was used in 
this study. Our previous study had shown the genomic 
characteristics and antibacterial capacity of Bacillus 
amyloliquefaciens BA40 against Clostridium perfrin-
gens (Jiang et  al. 2022). In this study, our analyses indi-
cated that the expression of sugar metabolism, energy 
metabolism, and selenoprotein metabolism pathway 
genes played an important role in SR14 fermentation. 
The results showed that SR14 possessed an abundance 
of specific genes. Fructokinase, a key enzyme involved in 
the process of carbohydrate degradation of Bacillus sub-
tilis (Nocek et  al. 2011), Corynebacterium glutamicum 
(Peng et al. 2011), and Zobellia galactanivorans (Groisil-
lier et  al. 2015), turned out to be significantly upregu-
lated in glucose-supplement group of SR14. In addition, 
glucose-6-phosphate 1-dehydrogenase participated in 
in NADPH-related glucose metabolism in prokaryotes, 
such as Escherichia coli (Xia et  al. 2015), Mycolicibacte-
rium neoaurum (Tang et  al. 2021), and Cyanobacteria 

(Tiruveedula and Wangikar 2017). Glucose-6-phosphate 
1-dehydrogenase and fructokinase mutant strain of SR14 
would be constructed for further experiment.

The selection of different sugar supplements is a major 
factor influencing the growth of bacteria, thereby affect-
ing their sodium selenite reduction ability. Glucose and 
sucrose have been shown to support the strain to detox-
ify selenite (Garbisu et al. 1995). Kashiwa et al. revealed 
that Bacillus sp. SF-1 was able to utilize a variety of 
organic acids or sugars, including acetate, citrate, fruc-
tose, glycerol, glucose, and sucrose, as the carbon source 
in selenate reduction (Kashiwa et al. 2000). Besides, var-
ies sugar supplements could lead to differences in the 
metabolites of Bacillus. Lu et al. indicated that compared 
with arabinose and sorbitol, fructose most efficiently 
increased the concentration of the essential component 
amino acids in Bacillus amyloliquefaciens fmb-60 (Lu 
et  al. 2016). Furthermore, bacterial exopolysaccharide 
associated carbohydrates such as galactose, glucose, 
mannose, and rhamnose played a significant role in syn-
thesis and stabilization of the SeNPs (Ghosh et al. 2022). 
In this study, SR14 exhibited the optimum growth and 
selenium reduction ability under glucose addition. With-
out sugar supplement, SR14 could reduce 1.94 ± 0.39 mM 

Fig. 5  Relative expression of selenite-reducing genes in SR14. Glu: glucose group; Fru: fructose group; Suc: sucrose group; Mal: maltose group. 
*P < 0.05, **P < 0.01 (n = 3)

Fig. 6  Relative expression of sugar metabolism genes in SR14. Glu: glucose group; Fru: fructose group; Suc: sucrose group; Mal: maltose group. 
*P < 0.05, **P < 0.01 (n = 3)
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sodium selenite, which was consistent with reported 
study (Barlow et  al. 2017). Moreover, SR14 could only 
reduce 0.42 ± 0.09  mM sodium selenite when there was 
no sugar in the culture medium.

Numerous theories existed regarding the process of 
bio-reduction of selenite to elemental selenium, which 
involved in multiple metabolic pathways (Wang et  al. 
2022a, b), including glutathione reductase-depend-
ent reduction (Kessi and Hanselmann 2004), TrxR-
dependent reduction (Rui et  al. 2022), siderophore or 
sulfide-mediated reduction (Zannoni et  al. 2008), and 
dissimilatory reduction (Song et  al. 2017). In this study, 
RT-PCR results indicated that multiple selenite-reducing 
enzymes were found to be significantly expressed only 
after glucose supplementation, including thioredoxin, 
fumarate reductase, and glutathione peroxidase. TrxR is 
one of the most important selenoenzyme that would be 
mainly involved in the detoxification of selenite (Jia et al. 
2022). A recent study showed that selenium-enriched 
Bifidobacterium breve YH68-Se enhanced activities of 
TrxR and glutathione peroxidase with increasing selenite 
concentration (Rui et  al. 2022). Shimizu et  al. showed 
that selenite was reduced by the thioredoxin system 
from Pseudomonas stutzeri (Shimizu et al. 2021), which 
was consistent with other studies on Alcaligenes faeca-
lis (Wang et  al. 2018b). Yasir et  al. reveal that NAD(P)
H-dependent TrxR was essential for selenite reduction in 
Bacillus sp. Y3 by proteomics analysis (Yasir et al. 2020). 
Fumarate reductase has been proven to be involved 
in nano-selenium synthesis (Oremland et  al. 1999). 
Our previous research revealed that E. cloacae Z0206 
reduced selenite using fumarate reductase, rather than 
thioredoxin (Song et al. 2017). We believed the selenite-
reducing process of SR14 might be complex and relied on 
multiple different enzymes.

We further investigated the reasons why the growth 
and selenium reduction effect of SR14 after glucose sup-
plementation was superior to other sugars. Based on the 
results of whole genome analysis, three representative 
sugar metabolism genes were selected and their mRNA 
expression was measured. The result showed that the 
expressions of glucose-6-phosphate 1-dehydrogenase, 
which could affect the intracellular NADH/NADPH ratio 
(Bao et al. 2015), and fructokinase, which phosphorylated 
d-fructose with ATP as a cofactor (Nocek et  al. 2011), 
were remarkably upregulated in Glu group. These results 
might indicate that SR14 exhibited more vigorous metab-
olism under glucose supplementation conditions.

In conclusion, this work has identified that 179 genes 
annotated with sugar metabolism in the genome of 
SR14, among which 47 were concerned with the maltose 
metabolism, and 69 were concerned with fructose metab-
olism. We confirmed that supplementing glucose had the 

best promoting effect on growth and selenite reduction, 
which might be associated with glucose-6-phosphate 
1-dehydrogenase. Meanwhile, SR14 might rely on thiore-
doxin, fumarate reductase, and glutathione peroxidase to 
reduce selenite.
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