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Abstract 

Deoxynivalenol (DON) is one of the most prevalent mycotoxin contaminants, which posing a serious health threat to 
animals and humans. Previous studies have found that individually supplemented probiotic or glycyrrhinic acid (GA) 
could degrade DON and alleviate DON-induced cytotoxicity. The present study investigated the effect of combin-
ing GA with Saccharomyces cerevisiae (S. cerevisiae) and Enterococcus faecalis (E. faecalis) using orthogonal design on 
alleviating IPEC-J2 cell damage induced by DON. The results showed that the optimal counts of S. cerevisiae and E. 
faecalis significantly promoted cell viability. The optimal combination for increasing cell viability was 400 µg/mL GA, 
1 × 106 CFU/mL S. cerevisiae and 1 × 106 CFU/mL E. faecalis to make GAP, which not only significantly alleviated the 
DON toxicity but also achieved the highest degradation rate of DON (34.7%). Moreover, DON exposure significantly 
increased IL-8, Caspase3 and NF-κB contents, and upregulated the mRNA expressions of Bax, Caspase 3, NF-κB and 
the protein expressions of Bax, TNF-α and COX-2. However, GAP addition significantly reduced aforementioned genes 
and proteins. Furthermore, GAP addition significantly increased the mRNA expressions of Claudin-1, Occludin, GLUT2 
and ASCT2, and the protein expressions of ZO-1, Claudin-1 and PePT1. It was inferred that the combination of GA, 
S. cerevisiae, and E. faecalis had the synergistic effect on enhancing cell viability and DON degradation, which could 
protect cells from DON-induced damage by reducing DON cytotoxicity, alleviating cell apoptosis and inflamma-
tion via inhibiting NF-κB signaling pathway, improving intestinal barrier function, and regulating nutrient absorption 
and transport. These findings suggest that GAP may have potential as a dietary supplement for livestock or humans 
exposed to DON-contaminated food or feed.
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Introduction
Mycotoxins are a series of toxic secondary metabolites 
produced by fungi that frequently contaminate feed, 
cereal crops and foods worldwide, causing cell damage, 
sickness and even death for domestic animals, as well 
as cancer for human (Richard 2007). Insufficient under-
standing of mycotoxin contamination due to undevel-
oped mycotoxin detection technologies (Schelstraete 
et al. 2020), has led to a serious underestimation of harm 
to human health and animal production (Pitt and Miller 
2017). According to the DSM World Mycotoxin Survey 
in 2021, deoxynivalenol (DON), fumitremorgin, and zea-
ralenone are the most prevalent mycotoxin contaminants 
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in raw cereal grains in China, with DON being the most 
common, accounting for 87% (https://​www.​biomin.​net/​
solut​ions/​mycot​oxin-​survey/). DON is a trichothecene 
B mycotoxin, also known as “vomitoxin” because of its 
emetic effect on organisms, especially swine. DON has 
acute and chronic toxicity, including cytotoxicity (Wang 
et  al. 2016; He et  al. 2021), immunotoxicity (Pestka and 
Smolinski 2005; Faeste et  al. 2022), intestinal toxicity 
(Pinton and Oswald 2014; Huang et  al. 2021). Animals 
exposed to DON usually suffer from nausea, vomiting, 
anorexia, abdominal pain, diarrhea and other symptoms 
(Mishra et  al. 2020; Shen et  al. 2021). Moreover, long-
term exposure to DON can lead to immune suppression, 
malnutrition and slow growth. Therefore, it is crucial to 
develop effective measures to reduce DON residue in 
animals and mitigate the harm it causes. Developing an 
effective substance to prevent these damages is an urgent 
issue that needs to be addressed.

At present, there are a few methods available to achieve 
the safe and efficient detoxification of DON, nutritional 
regulation and probiotics being the most common ones. 
Glycyrrhinic acid (GA) is an extractive from glycyr-
rhiza that has proven to have anti-inflammatory, immu-
nomodulatory, and anti-oxidative properties (Bentz et al. 
2019; Afkhami-Poostchi et  al. 2020; Akutagawa et  al. 
2019). Studies show that GA can improve the growth 
and meat quality of piglets (Alfajaro et  al. 2012) and 
regulate autophagy to alleviate acute lung injury caused 
by lipopolysaccharides (Qu et al. 2019). In our previous 
study, we found that GA could alleviate DON-induced 
oxidative stress, inflammatory response and apoptosis 
through TNF and NF-κB signaling pathways in IPEC-
J2 cells (Xu et  al. 2020c). On the other hand, probiotics 
are considered as a substitute for antibiotics in farming, 
due to its benefits to gut barrier and immune system 
(Garcia et  al. 2018). Our primary study has shown that 
the combination of compound probiotics with berberine 
could improve the health of piglets, enhance immunity, 
and reduce diarrhea rates (Xu et al. 2020d). Studies have 
reported that probiotics such as Lactobacillus, Enterococ-
cus faecalis (E. faecalis), Bifidobacteria and yeast, as well 
as some compound probiotics, can effectively degrade 
mycotoxins (de Souza et al. 2020; Alassane-Kpembi et al. 
2018). Our primary research also confirmed the allevia-
tive effects of Saccharomyces cerevisiae (S. cerevisiae) in 
DON-induced inflammation (Chang et  al. 2017). How-
ever, the combination effect of GA and compound pro-
biotics in alleviating DON-induced cytotoxicity is still 
uninvestigated.

Overall, this study aimed to find the best combination 
and ratio of GA, S. cerevisiae and E. faecalis to effectively 
reduce the toxicity of DON in animal feed. By using an 
orthogonal design, researchers hope to optimize the 

compatibility of GA and probiotics to create a safer feed 
for animals. This study will provide useful information 
for the production of animal feed that is safe and healthy 
for consumption.

Materials and methods
Materials and reagents
DON (purity > 99%) was purchased from Sigma-Aldrich 
(St. Louis, MO, USA), and dissolved in dimethyl sulfox-
ide (DMSO) to obtain 1 mg/mL stock solution. GA was 
provided by Henan Delin Biological Products Co., Ltd., 
Xinxiang, China. DMSO, 0.25% pancreatin with ethylen-
ediaminetetraacetic acid, phosphatebuffered saline (PBS), 
penicillin–streptomycin and thiazolyl blue tetrazolium 
bromide (MTT) were purchased from Solarbio (Beijing 
Solarbio Biotechnology Co., Ltd. Beijing, China). High-
glucose Dulbecco’s Modified Eagle Medium (DMEM) 
and fetal bovine serum (FBS) were purchased from Bio-
logical Industries (Kibbutz Beit-Haemek, Israel). Yeast 
extract powder, tryptone, peptone, sodium chloride, glu-
cose, methanol, anhydrous ethanol, potassium dihydro-
gen phosphate, anhydrous sodium acetate, manganese 
sulfate and magnesium sulfate were domestic analyti-
cally pure; DON quantitative detection kit was purchased 
from Suwei Biological Research Co., Ltd. Jiangsu, China. 
The IL-8, NF-κB, and Caspase 3 concentrations assay kits 
were purchased from Jiangsu Meimian Industrial Co., 
Ltd., Jiangsu, China. Rabbit polyclonal antibodies of Bax 
(abs119724), TNF-α (abs123966), COX-2 (abs120547), 
ZO-1 (abs131224), Claudin-1 (abs130064), PePT1 
(abs134568), β-actin and goat anti-rabbit antibody of IgG 
were purchased from Absin Bioscience Inc. (Shanghai, 
China).

Probiotics preparation
Enterococcus faecalis (E. faecalis, CGMCC1.2135) and 
Saccharomyces cerevisiae (S. cerevisiae, CGMCC 2.1542) 
used in the experiment were purchased from China 
General Microbiological Culture Collection Center 
(CGMCC), Beijing, China. E. faecalis and S. cerevisiae 
were incubated in MRS and YPD liquid media according 
to the previous report, respectively (Liu et al. 2019). The 
fermentation liquid of above probiotics were harvested 
after 36 h culture and determined by plating serial dilu-
tions and measured as colony forming units (CFU), and 
then centrifuged at 8000 r/min for 5 min, the supernatant 
was absorbed, sterilized by 0.22  μm Minisart high-flow 
filter and stored at 4  °C for further use. The centrifuged 
cells were resuspended in equal volume using High-glu-
cose DMEM medium without serum and antibiotics. The 
fermentation liquid, supernatant and cells were diluted 
to the different concentrations (viable counts of 1 × 102, 
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1 × 103, 1 × 104, 1 × 105 and 1 × 106  CFU/mL) with High-
glucose DMEM without serum and antibiotics.

Cell culture
The cells were cultured in complete media, which com-
prised of High-glucose DMEM supplemented with 10% 
FBS and 1% penicillin–streptomycin in a humidified 
incubator at 37 °C with 5% CO2.

Cell viability
IPEC-J2 cells were seeded into 96-well plate at a density 
of 1 × 104 cells/ well (100 μL per well) and incubated for 
24  h. Then the culture medium was removed, and the 
cells were washed twice with PBS. Next the cells were 
incubated with GA at concentrations of 50, 100, 200, 
400 and 800  μg/mL, and the supernatant, cells and fer-
mentation liquid of E. faecalis and S. cerevisiae were 
added at different concentrations of viable counts of 
1 × 102, 1 × 103, 1 × 104, 1 × 105 and 1 × 106 CFU/mL with 
or without 0.5 μg/mL DON for 6 h, respectively. GA and 
DON were diluted with High-glucose DMEM without 
serum and antibiotics. After all treatments, the cells were 
washed and incubated in serum-free media containing 
0.5  mg/mL MTT at 37  °C with 5% CO2 for 4  h. Subse-
quently, the supernatant was removed, and each well was 
added with 150 μL DMSO and gently shaken for 15 min. 
The absorbance was measured at 490  nm with an ELx 
800 microplate reader (BIO-TEK Instruments Inc., Win-
ooski, VT, USA).

Orthogonal experimental design and repeatability test 
validation
Based on the results of single-factor experiments, the via-
ble count of E. faecalis and S. cerevisiae, and the concen-
tration of GA were selected as experimental factors. L9 
(34) orthogonal design was selected to optimize the com-
pound of the three substances. Here, L represented the 
orthogonal table; 9 was the total groups of experiment; 3 
was the number of factors; 4 represented the maximum 
allowed number of factors. The design of factors and lev-
els was shown in Table 1.

ELISA assay
IPEC-J2 cells were seeded at a density of 5 × 105 cells/
well in 6-well plate until the cell fusion rate reached 
80%, and then incubated different treatments for 6  h. 
Thereafter, the cell supernatants of different treatments 
were collected and centrifuged at 12,000 rpm for 5 min. 
The concentration of IL-8, Caspase 3 and NF-κB were 
measured using enzyme-linked immunosorbent assays 
(ELISA) according to the manufacturer’s instructions. 
The absorbance was determined at 450 nm using an ELx 

800 microplate reader (BIO-TEK Instruments Inc., Win-
ooski, VT, USA).

Quantitative real‑time PCR and western blotting analysis
IPEC-J2 cells (5 × 105 cells/well) were seeded in 6-well 
plate and allowed to culcure for 24  h, and then incu-
bated four treatments for 6 h. Total RNA or protein were 
extracted with Trizol reagent (Takara) or RIPA buffer 
(EpiZyme Biotechnology, Shanghai, China) according 
to the manufacturer’s instructions, and then subjected 
to qRT-PCR or western blotting as previously described 
(Xu et al. 2020a). The detail primers were summarized in 
Additional file 1: Table S1.

Statistical analysis
All data were expressed as mean ± standard deviation 
(SD). Differences between groups were determined by 
one-way ANOVA using SPSS 20.0 software, and Dun-
can’s multiple range test was used for multiple compari-
son. P < 0.05 indicates significant difference, while P > 0.05 
indicates no significant difference.

Results
Effects of supernatant, cells and fermentation liquid of S. 
cerevisiae on cell viability in DON‑induced IPEC‑J2 cells
As shown in Fig. 1a–c, the supernatant, cells and fermen-
tation liquid of S. cerevisiae had no toxicity to IPEC-J2 
cells. Compared with the control group, the cell viability 
was significantly increased when the cells of S. cerevisiae 
were 1 × 104, 1 × 105 and 1 × 106  CFU/mL (P < 0.05), and 
the supernatant of S. cerevisiae had no significant effect 
on cell viability (P > 0.05). In addition, compared with 
DON alone group, 1 × 106  CFU/mL cells and fermenta-
tion liquid of S. cerevisiae addition could significantly 
increase cell viability (P < 0.05), while the supernatant 
had no significant effect (P > 0.05). Therefore, the cells 
of S. cerevisiae were selected as 1 × 104, 1 × 105 and 
1 × 106 CFU/mL in the subsequent experiments.

Effects of supernatant, cells and fermentation liquid of E. 
faecalis on cell viability in DON‑induced IPEC‑J2 cells
Figure  2a–c showed that the supernatant, cells and 
fermentation liquid of E. faecalis had no toxicity to 
IPEC-J2 cells, and the cell viabilities were significantly 

Table 1  Factors and levels of orthogonal experiment design

Levels A GA
(µg/mL)

B S. cerevisiae
(lg, CFU/mL)

C E. faecalis
(lg, CFU/mL)

1 200 4 4

2 400 5 5

3 600 6 6
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increased (P < 0.05) when the supernatant, cells and fer-
mentation liquid of E. faecalis were 1 × 106  CFU/mL, 
respectively, compared to the control group. Further-
more, compared with DON alone group, 1 × 106 CFU/
mL cells, 1 × 105 and 1 × 106  CFU/mL supernatant of 
E. faecalis additions could prominently enhance cell 
viability (P < 0.05). Hence, the cells of E. faecalis were 
selected as 1 × 104, 1 × 105 and 1 × 106 CFU/mL for the 
subsequent orthogonal experiment.

Effects of GA on cell viability
Figure  3 showed that different concentrations of GA 
could significantly increase cell viability (P < 0.05), and 
the cell viability reached the maximum when GA con-
centration was 400 µg/mL, compared with the control 
group. Compared with DON alone group, 200  µg/mL 
and 400 µg/mL GA addition significantly increased cell 
viability. Therefore, 200, 400 and 600  µg/mL GA con-
centrations were selected for the subsequent orthogo-
nal experiment.

Optimization of S. cerevisiae, E. faecalis and GA on cell 
viability and DON degradation rate
According to the results of Additional file  1: Tables S2 
and S3, the order of orthogonal factors in increasing cell 

Fig. 1  Effects of supernatant, cells and fermentation liquid of S. cerevisiae on cell viability. a Supernatant of S. cerevisiae; b Cells of S. cerevisiae; c 
Fermentation liquid of S. cerevisiae. All the values are expressed as the mean ± SD (n = 6). Different marked letters on each bar indicate significant 
difference from each other (P < 0.05), while the same marked letters on each bar indicate insignificant difference from each other (P > 0.05)

Fig. 2  Effects of fermentation liquid, cells and supernatant of E. faecalis on cell viability. a Supernatant of E. faecalis; b Cells of E. faecalis; c 
Fermentation liquid of E. faecalis. All the values are expressed as the mean ± SD (n = 6). Different marked letters on each bar indicate significant 
difference from each other (P < 0.05), while the same marked letters on each bar indicate insignificant difference from each other (P > 0.05)

Fig. 3  Effects of GA on cell viability. All the values are expressed as 
the mean ± SD (n = 6). Different marked letters on each bar indicate 
significant difference from each other (P < 0.05), while the same 
marked letters on each bar indicate insignificant difference from each 
other (P > 0.05)
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viability was: B > A > C, and the order was changed to the 
following: B > C > A when the three factors were com-
bined with DON; where A, B and C are the orthogonal 
factors representing GA, S. cerevisiae and E. faecalis. 
Three factors had no significant impact on cell viability 
(P > 0.05). The orthogonal experimental results in Tables 2 
and 3 showed that the optimal level of combination was 
A2B3C1, indicating 400  µg/mL GA, 1 × 106  CFU/mL 
S. cerevisiae and 1 × 104  CFU/mL E. faecalis; while the 
best combination of range analysis was A2B3C3, indi-
cating 400 µg/mL GA, 1 × 106 CFU/mL S. cerevisiae and 
1 × 106 CFU/mL E. faecalis. Through verifying the above 
two results and their interactions (Table 4), it was found 
that the combination of 400 µg/mL GA, 1 × 106 CFU/mL 
S. cerevisiae and 1 × 106 CFU/mL E. faecalis could signifi-
cantly increase the cell viability and alleviate the toxicity 
of DON (P < 0.05). In addition, the degradation rate of 
DON by this combination was 34.7%, which was signifi-
cantly higher than that of other combinations (P < 0.05). 
Therefore, 400 µg/mL GA, 1 × 106 CFU/mL S. cerevisiae 
and 1 × 106 CFU/mL E. faecalis were selected as the opti-
mal combination for the subsequent experiments.

Effects of GA and compound probiotics (GAP) on IL‑8, 
Caspase 3 and NF‑κB contents in DON‑induced IPEC‑J2 
cells
As shown in Fig.  4a–c, compared with the control 
group, DON alone group significantly increased the 
contents of IL-8, Caspase 3 and NF-κB (P < 0.05). Com-
pared to the DON alone group, GAP supplementation 

significantly decreased IL-8 and NF-κB contents 
(P < 0.05), GPD group significantly decreased the NF-κB 
content (P < 0.05), while there was no significant differ-
ence in the content of Caspase 3 (P > 0.05).

Effects of GAP on apoptosis, tight junction protein 
and nutrient transport‑related gene expressions 
in DON‑induced IPEC‑J2 cells
It was shown that the relative mRNA abundances of 
Bax, Caspase 3 and NF-κB in the DON group were 
significantly upregulated, compared with the control 
group (P < 0.01); whereas they were significantly down-
regulated by GAP addition (P < 0.05). In addition, DON 
exposure remarkably downregulated the expressions of 
Bcl-2 and Claudin-1, compared with the control group 
(P < 0.01); while GPD group significantly upregulated 
the expressions of Claudin-1 and Occludin, compared 
with DON alone group (P < 0.05) (Fig.  5a–f ). Fig-
ure  5g–i showed that DON alone group dramatically 
downregulated PepT1 expression compared with the 
control group (P < 0.05), while GAP addition signifi-
cantly upregulated its expression (P < 0.05). Although 
there was no significant difference in the expressions of 
GLUT2 and ASCT2 between the DON alone group and 
control group, GPD group significantly increased their 
expressions (P < 0.05).

Table 2  Effect of different combinations of GA, S. cerevisiae and 
E. faecalis on IPEC-J2 cell viability

All the values are expressed as the mean ± SD (n = 6). Different marked letters in 
the column indicate significant difference from each other (P < 0.05), while the 
same marked letters in the column indicate insignificant difference from each 
other (P > 0.05)

Groups A GA
(µg/mL)

B S. cerevisiae
(lg, CFU/mL)

C E. faecalis
(lg, CFU/mL)

Cell viability (%)

Control – – – 100.0 ± 2.2de

1 200 4 4 94.2 ± 1.7f

2 200 5 5 95.7 ± 2.3ef

3 200 6 6 110.0 ± 4.0ab

4 400 4 5 102.2 ± 2.5cd

5 400 5 6 106.5 ± 4.0bc

6 400 6 4 112.3 ± 4.1a

7 600 4 6 102.6 ± 6.5cd

8 600 5 4 106.7 ± 3.4bc

9 600 6 5 107.4 ± 4.5 b

k1 99.9 99.1 104.4

k2 107.0 103.0 101.2

k3 105.6 109.9 106.4

Table 3  Effects of GA, S. cerevisiae, E. faecalis and DON synergies 
on IPEC-J2 cell viability

All the values are expressed as the mean ± SD (n = 6). Different marked letters in 
the column indicate significant difference from each other (P < 0.05), while the 
same marked letters in the column indicate insignificant difference from each 
other (P > 0.05)

Groups A GA
(µg/mL)

B S. cerevisiae
(lg, CFU/mL)

C E. faecalis
(lg, CFU/mL)

Cell viability (%)

Control – – – 100.0 ± 1.1a

DON – – – 82.1 ± 2.4de

1 200 4 4 86.2 ± 4.1cd

2 200 5 5 83.8 ± 2.5de

3 200 6 6 90.6 ± 4.8b

4 400 4 5 86.6 ± 1.6bc

5 400 5 6 86.9 ± 1.7bc

6 400 6 4 91.3 ± 2.0b

7 600 4 6 90.3 ± 1.5b

8 600 5 4 87.0 ± 1.9bc

9 600 6 5 87.4 ± 2.7bc

k1 86.9 87.7 88.2

k2 88.3 85.9 85.9

k3 88.2 89.8 89.3
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Effects of GAP on inflammation, apoptosis, tight junction 
protein and nutrient transport‑related protein expressions 
in DON‑induced IPEC‑J2 cells
The results in Fig.  6a–d indicated that compared with 
the control group, DON alone addition significantly 
increased the protein expressions of Bax, TNF-α and 
COX-2 (P < 0.05), and significantly decreased the protein 

expressions of ZO-1 and Claudin-1 (P < 0.05), but there 
was no significant difference in PePT1 protein expression 
(P > 0.05). Compared with DON alone group, GAP group 
significantly decreased the protein expressions of Bax, 
TNF-α and COX-2 (P < 0.05), and significantly increased 
the protein expressions of ZO-1, Claudin-1 (P < 0.01) 
and PePT1 (P < 0.05). The protein expressions of Bax 

Table 4  Verification results of orthogonal and interactive effects of GA, S. cerevisiae and E. faecalis and their effects on DON 
degradation rate

“–” indicates undetermined. All values are expressed as the mean ± SD (n = 6). Different marked letters in the column indicate significant difference from each other 
(P < 0.05), while the same marked letters in the column indicate insignificant difference from each other (P > 0.05)

Groups Cell viability (%) DON 
degradation 
rate (%)

Control 100.0 ± 1.5d –

GA (400 µg/mL) 110.4 ± 3.4cd –

S. cerevisiae (1 × 106 CFU/mL) 115.3 ± 7.9bc –

E. faecalis (1 × 106 CFU/mL) 117.4 ± 5.2bc –

E. faecalis (1 × 106 CFU/mL) 100.6 ± 1.6d –

GA + S. cerevisiae (1 × 106 CFU/mL) 113.3 ± 6.6bcd –

GA + E. faecalis (1 × 106 CFU/mL) 116.8 ± 2.4bc –

GA + S. cerevisiae (1 × 106 CFU/mL) + E. faecalis (1 × 106 CFU/mL) 125.9 ± 4.8a –

GA + S. Cerevisiae (1 × 106 CFU/mL) + E. faecalis (1 × 104 CFU/mL) 121.3 ± 3.2ab –

DON (0.5 μg/mL) 84.4 ± 2.1de –

GA (400 µg/mL) + DON 90.4 ± 3.9cde 9.6 ± 2.1f

S. Cerevisiae (1 × 106 CFU/mL) + DON 92.7 ± 3.2bcd 20.8 ± 0.9d

E. faecalis (1 × 106 CFU/mL) + DON 93.8 ± 2.9bc 18.4 ± 1.1de

E. faecalis (1 × 104 CFU/mL) + DON 87.2 ± 4.5de 16.5 ± 1.3e

GA + S. Cerevisiae (1 × 106 CFU/mL) + DON 93.2 ± 1.9bc 28.3 ± 2.3bc

GA + E. Faecalis (1 × 106 CFU/mL) + DON 96.1 ± 5.1ab 26.9 ± 1.7c

GA + S. Cerevisiae (1 × 106 CFU/mL) + E. faecalis (1 × 106 CFU/mL) + DON 100.1 ± 3.2a 34.7 ± 2.1a

GA + S. Cerevisiae (1 × 106 CFU/mL) + E. faecalis (1 × 104 CFU/mL) + DON 92.9 ± 3.9bcd 30.3 ± 1.7ab

Fig. 4  Effect of GAP on IL-8, Caspase 3 and NF-κB contents in IPEC-J2 cell supernatant induced by DON. A–C: IL-8, Caspase 3 and NF-κB contents 
in cell supernatant. CON: IPEC-J2 cells were treated with high glucose DMEM. DON: 0.5 μg/mL DON for 6 h. GAP: 400 µg/mL GA, 1 × 106 CFU/mL 
S. Cerevisiae and 1 × 106 CFU/mL E. faecalis for 6 h. GPD (GAP + DON): 400 µg/mL GA, 1 × 106 CFU/mL S. Cerevisiae, 1 × 106 CFU/mL E. faecalis and 
0.5 μg/mL DON for 6 h. All the values are expressed as the mean ± SD (n = 3). Compared with the control group, *P < 0.05, **P < 0.01; compared with 
the DON group, #P < 0.05, ##P < 0.01
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and COX-2 were significantly decreased in GPD group 
(P < 0.05), while the protein expressions of ZO-1, Clau-
din-1 and PePT1 were significantly increased (P < 0.05).

Discussion
The contamination of DON has caused extensive dam-
age to animal healthy and production. In recent years, 
plant extracts and probiotics including yeast and lac-
tic acid bacteria, exert an increasingly important role 
in the animal production. In the present study, the 
orthogonal design was adopted to optimize the ratio 
of GA, S. cerevisiae, and E. faecalis to obtain the best 
combination of these three substances to degrade DON 
and alleviate its cytotoxicity.

Probiotics have been widely used in livestock and poul-
try diets as good alternatives to antibiotics due to their 
prominent advantages of safety, non-pollution, and lack 
of residues (Pandey et  al. 2015). Probiotics mainly have 
the characters of inhibiting the growth and reproduc-
tion of pathogenic bacteria in the gastrointestinal tract, 
strengthening the mucosal barrier, improving the func-
tion of the gastrointestinal tract, regulating the micro-
ecological balance of the gastrointestinal tract, enhancing 
the immunity of the body, purifying the farming environ-
ment, degrading mycotoxins, and finally promoting ani-
mal production (Gaggia et al. 2010; Jha et al. 2020). Yeast 
and lactic acid bacteria are the most widely used probiot-
ics as animal feed additives. Studies have shown that they 
can alleviate DON-induced porcine intestinal damage 

Fig. 5  Effects of GAP on inflammation, apoptosis, tight junction protein and nutrient transport-related gene expressions in IPEC-J2 cells induced by 
DON. a–i Protein expressions of Bax, Bcl-2, Caspase 3, Claudin-1, Occludin, NF-κB, PePT1, ZO-1, GLUT2 and ASCT2. All the values are expressed as the 
mean ± SD (n = 3). Compared with the control group, *P < 0.05, **P < 0.01; compared with the DON group, #P < 0.05, ##P < 0.01
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(Weaver et al. 2013; Ma et al. 2022; Maidana et al. 2021). 
At the same time, our previous research also found that 
S. cerevisiae has a certain repair effect on DON-induced 
IPEC-J2 cell damage, which can increase cell viability 
and protect cell integrity (Liu et al. 2019). Furthermore, 
S. cerevisiae was shown to protect against DON-induced 
inflammation by reducing the expression of downstream 
inflammatory cytokines and the activation of the p38 
mitogen-activated protein kinase (p38 MAPK) pathway 
(Chang et  al. 2017). E. faecalis is a facultative anaero-
bic gram-positive bacterium, which can improve ani-
mal growth performance, intestinal microflora, nutrient 
absorption and immunity (Thacker 2013; Maake et  al. 
2021; Zhang et  al. 2019). In addition, E. faecalis exerts 
anti-inflammatory effects by modulating NF-κB, MAPK, 

and PPAR-γ1 pathways (Are et al. 2008; Oc et al. 2018). 
Previously, our team found that E. faecalis had a certain 
effect on degrading DON in  vitro. In the present study, 
we investigated the effects of the supernatant, cells, and 
fermentation liquid of S. cerevisiae and E. faecalis on cell 
viability. The results showed that the microbes used in 
this study were non-toxic to cells, and a certain counts 
of viable bacteria (1 × 106  CFU/mL) could significantly 
promote cell proliferation and reduce the toxic effects of 
DON. However, the effect of supernatant for cell viability 
was not significant. Research has shown that Lc. paraca-
sei LHZ-1 isolated from yogurt achieved a 40.7% reduc-
tion of DON by the cell wall. In contrast, only 10.5% and 
8.9% were reduced by culture supernatant or cellular 
lysate, respectively (Zhai et al. 2019), which indicates that 

Fig. 6  Effects of GAP on inflammation, apoptosis, tight junction protein and nutrient transport-related protein expressions in IPEC-J2 cells induced 
by DON. (a and c) Protein expressions of Bax, TNF-α and COX-2; (b and d) Protein expressions of ZO-1, Claudin-1 and PePT1. All the values are 
expressed as the mean ± SD (n = 3). Compared with the control group, *P < 0.05, **P < 0.01; compared with the DON group, #P < 0.05, ##P < 0.01
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the supernatant of lactic acid bacteria for cell viability 
under DON treatment was limited. This study demon-
strated that S. cerevisiae and E. faecalis have protective 
effects on cells.

As mentioned above, yeast and lactic acid bacteria play 
important roles in animal production, and their combi-
nation provides better benefits than individual addition. 
The interaction between mycotoxins and the functional 
groups of the cell surface results in mycotoxin adsorption 
on the cell wall structure. Yeast cell walls, which contain 
many different adsorption sites represented by polysac-
charides, proteins, and lipids, play a crucial role in the 
detoxification process (Holanda et al. 2020; Faucet-Mar-
quis et al. 2014). Since the mycotoxin adsorption is physi-
cal (based on ion exchange and complexation) (Huwig 
et  al. 2001), mycotoxin contamination has been proven 
to bring little influence on yeast activity (Nathanail et al. 
2016). Lactic acid bacteria, on the other hand, mainly rely 
on peptidoglycan and extracellular polysaccharide of the 
cell wall to adsorb toxins, thereby reducing the toxicity of 
mycotoxins. Our previous studies have indicated that GA 
can promote cell proliferation and reduce DON cytotox-
icity (Xu et al. 2020c), and both S. cerevisiae and E. faeca-
lis have certain effects on degrading DON. Therefore, the 
combination of compound probiotics and plant extracts 
could potentially have a higher efficacy in DON degrada-
tion and animal production. In this study, we optimized 
the combination of S. cerevisiae, E. faecalis and GA using 
an orthogonal experiment and explored the effects of this 
combination on the degradation of DON and alleviation 
of DON-induced cytotoxicity. The results showed that a 
certain amount of S. cerevisiae and E. faecalis could sig-
nificantly promote IPEC-J2 cell proliferation, and there 
was a synergistic effect among different concentrations of 
S. cerevisiae, E. faecalis and GA. Specifically, the optimal 
efficiency was obtained under the combination of 400 µg/
mL GA, 1 × 106  CFU/mL S. cerevisiae and 1 × 106  CFU/
mL E. faecalis. This combination significantly improved 
cell viability, reduced the toxicity of DON, and maxi-
mized the degradation rate of DON. These findings are 
consistent with other studies that have demonstrated the 
significant increase in detoxification of mycotoxins with 
the combined use of compound probiotics compared to 
individual addition (Huang et al. 2018).

To further illuminate the alleviative mechanism of 
GAP on DON, we quantified changes in gene and protein 
expression related to inflammation, apoptosis, tight junc-
tion, and nutrient transport. Results revealed that DON 
significantly increased the contents of IL-8, Caspase3 and 
NF-κB, and upregulated the mRNA expressions of Bax, 
Caspase 3, NF-κB and the protein expressions of Bax, 
TNF-α and COX-2. However, GAP addition significantly 

reduced aforementioned genes and proteins, indicat-
ing that GAP might alleviate DON-induced inflamma-
tion and apoptosis by inhibiting of the NF-κB signaling 
pathway. In addition, DON exposure affected intestinal 
barrier function by downregulating ZO-1 and Claudin-1 
proteins, whereas GAP significantly upregulated their 
expressions, which was in accordance with the previ-
ous report (Huang et al. 2019). Thus, we assume that the 
combination of GA and compound probiotics can alle-
viate the cytotoxicity induced by DON. Probiotics can 
reduce the damage caused by pathogens, drugs and other 
factors and increase intestinal tightness (Petrova et  al. 
2022). Compound probiotics can prevent cell inflamma-
tion and apoptosis by maintaining the stable expression 
of Claudin-1. In the present study, the combination of 
GA and compound probiotics increased the expression 
of Claudin-1, indicating that GAP could protect intesti-
nal epithelial cells from DON damage. PepT1, GLUT2 
and ASCT2 are the common and representative nutrient 
transporters. PePT1 is an oligopeptide transporter that 
mainly exists on the brush border membrane of small 
intestinal epithelial cells. It holds the function of trans-
porting and absorbing dipeptide and tripeptide of protein 
degradation products, which plays an important role in 
maintaining the stability of the organism internal envi-
ronment and the absorption of drugs in the gastrointes-
tinal tract (Mertl et  al. 2008). GLUT2 and ASCT2 were 
mainly responsible for glucose absorption and neutral 
amino acid transport of intestinal, respectively (Xu et al. 
2020b). We found that GAP significantly increased the 
expression of PePT1, GLUT2 and ASCT2, which was 
beneficial to the transport and absorption of nutrients 
in the intestine, and alleviated the damage of DON to 
nutrient transport. The results revealed that GAP could 
enhance the intestinal barrier function and improve 
nutrient transport and absorption to mitigate the DON-
induced cytotoxicity.

In conclusion, our study suggests that the combina-
tion of GA and compound probiotics can enhance the 
synergistic effect of cell viability and DON degradation, 
and protect IPEC-J2 cells from DON damage by reduc-
ing DON cytotoxicity and alleviating inflammation and 
apoptosis via inhibiting NF-κB signaling pathway, as well 
as improving intestinal barrier function and regulating 
nutrients transport and absorption. This study provides 
a theoretical basis for the acting mechanism of GA and 
compound probiotics as potential protective agents to 
reduce DON-induced cell damage, and also provides a 
reference for the use of GA and compound probiotics to 
prevent intestinal injury in humans and animals in the 
future.
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