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Abstract 

The natural soil environment is considered one of the most diverse habitats containing numerous bacteria, fungi, and 
larger organisms such as nematodes, insects, or rodents. Rhizosphere bacteria play vital roles in plant nutrition and 
the growth promotion of their host plant. The aim of this study was to evaluate the effects of three plant growth-pro-
moting rhizobacteria (PGPR), Bacillus subtilis, Bacillus amyloliquefaciens, and Pseudomonas monteilii for their potential 
role as a biofertilizer. The effect of the PGPR was examined at a commercial strawberry farm in Dayton, Oregon. The 
PGPR were applied to the soil of the strawberry (Fragaria × ananassa cultivar Hood) plants in two different concentra-
tions of PGPR, T1 (0.24% PGPR) and T2 (0.48% PGPR), and C (no PGPR). A total of 450 samples from August 2020 to May 
2021 were collected, and microbiome sequencing based on the V4 region of the 16S rRNA gene was conducted. The 
strawberry quality was measured by sensory evaluation, total acidity (TA), total soluble solids (TSS), color (lightness 
and chroma), and volatile compounds. Application of the PGPR significantly increased the populations of Bacillus and 
Pseudomonas and promoted the growth of nitrogen-fixing bacteria. The TSS and color evaluation showed that the 
PGPR presumptively behaved as a ripening enhancer. The PGPR contributed to the production of fruit-related volatile 
compounds, while the sensory evaluation did not show significant differences among the three groups. The major 
finding of this study suggests that the consortium of the three PGPR have a potential role as a biofertilizer by support-
ing the growth of other microorganisms (nitrogen-fixing bacteria) as part of a synergetic effect and strawberry quality 
such as sweetness and volatile compounds.

Key points 

•	 Application of the PGPR significantly increased the population of the Bacillus and Pseudomonas genus.
•	 Application of the PGPR induced the growth of other beneficial bacteria.
•	 The PGPR have potential role as a ripening enhancer.

Keywords  Plant growth promoting rhizobacteria, Strawberry, Soil microbiome, Biofertilizer

Introduction
A complex biological and chemical activity of microbes 
in the soil contributes to the quality and productivity of 
fresh strawberries (Jung et  al. 2012; Jacoby et  al. 2017; 
Lazcano et  al. 2021; Liu et  al. 2021). These factors not 
only help develop natural plant defenses, but help to 
resist stresses caused by biotic and abiotic factors (Jung 
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et al. 2012). Organic produce farming is a type of farm-
ing that avoids or limits the use of synthetic fertilizers, 
growth regulators, and livestock feed additives. Organic 
farmers instead rely heavily on biofertilizers, crop rota-
tions, compost, cover crops, plant by-products, animal 
manure, and other biologic materials to enhance product 
quality (Samtani et al. 2019).

The use of harmful chemical fertilizers and pesticides 
is an ongoing issue that has significant negative impacts 
on the environment (Pahalvi et  al. 2021). These threats 
have induced interest in using beneficial microbes, 
such as PGPR (plant growth-promoting rhizobacteria), 
to develop sustainable and safe agricultural practices 
(Alori and Babalola 2018; Deng et  al. 2019; Liu et  al. 
2021). Biofertilizers selectively maintain soil microbiota 
that may be employed as microbial or soil inoculants to 
increase both plant and soil fertility and plant productiv-
ity (Pereg and McMillan 2015; Deng et al. 2019; Liu et al. 
2021). In other words, a biofertilizer or microbial ferti-
lizer, is a substance composed of living microbes and a 
combination of biodegradable substances that enhance 
the growth and yield by increasing availability of essen-
tial nutrients to the host plant. The biofertilizers applied 
to seed, plant surfaces, or soil, colonize the plant’s envi-
ronment through several means, such as rhizosphere 
and intercellular spaces (Pereg and McMillan 2015; Deng 
et al. 2019).

The PGPR are microbes associated with the plant 
rhizosphere (the space around the plant roots) where 
coordinate with the plant to exchange nutrients (Deng 
et al. 2019; Lyu et al. 2019; Vejan et al. 2016). Many bac-
terial species, most of which are present in the plant 
rhizosphere, have been examined and suggested to be 
beneficial to plant growth, yield, and crop quality (Laz-
cano et  al. 2021). In general, PGPR includes strains in 
the genera Pseudomonas, Bacillus, Azotobacter, Erwinia, 
Serratia, Azospirillum, Caulobacter, Chromobacterium, 
Agrobacterium, Flavobacterium, Arthrobacter, Micrococ-
cus, and Burkholderia (Miransari 2016; Vejan et al. 2016; 
Di Benedetto., 2017; Verma et  al. 2019). Specifically, 
Bacillus  species produce spores that can live in the soil 
for lengthy periods in adverse environments (Hashem 
et  al. 2019). Though the exact processes through which 
PGPR stimulates plant growth are not fully understood, 
both direct and indirect mechanisms are suggested. 
A review published by Hashem et  al. (2019) suggests 
that PGPR stimulate plant growth by inducing systemic 
resistance against biotic stress, antibiosis, and competi-
tive omission.

Several approaches such as culture-dependent and 
-independent methods have been established to exam-
ine microbes in the soil and rhizosphere (Lee et  al. 
2021;  Rincon-Florez et  al. 2013; Romano et  al. 2020; 

Sangiorgio et  al. 2022). Though the culture-dependent 
methods are widely applied to study the persistence of 
microbes, it is challenging to distinguish overall microbes 
based on morphological characteristics. Moreover, there 
are still many unculturable microbes (Romano et  al. 
2020). Next generation sequencing (NGS) techniques are 
culture-independent methods that may provide a more 
direct identification of microbial taxa and overcome the 
limitations of culture-dependent methods (Oberauner 
et al. 2013; Uroz et al. 2013; Zhu et al. 2018). Consider-
ing the plant rhizosphere includes a complex assembly 
of diverse microbes and the potential impact of indig-
enous microbes, investigating the soil microbiome can 
provide a deeper understanding of PGPR effects (Deng 
et  al. 2019; Xiong et  al. 2021). Microbiome sequencing 
can identify the transmission of indicator microbes from 
environmental sources in the soil as well as the shift of 
microbial populations due to PGPR treated rhizospheres.

In this study, a consortium of three PGPR: Bacillus sub-
tilis, Bacillus amyloliquefaciens, and Pseudomonas mon-
teilii was evaluated for its potential roles as a biofertilizer 
through microbiome and strawberry quality analysis. The 
PGPR were applied to the soil of strawberry (Fragaria × 
ananassa cultivar Hood) plants to profile the main soil 
rhizobacteria and microbial diversity associated with 
the PGPR treatment. Additionally, sensory evaluation, 
pomological (total acidity (TA), total soluble solid con-
tent (TSS), and color (lightness and chroma)) assays, and 
volatile compounds of the strawberries harvested from 
PGPR treated soil were measured to evaluate strawberry 
quality.

Materials and methods
Experimental design and sample collection
The Soil Activator™ (Earth Alive™, Lasalle, QC, Canada), 
containing three PGPR species: B. subtilis, B. amylolique-
faciens, and  P. monteilii, was used in this study. The 
experimental field was located on a commercial straw-
berry farm in Dayton, Oregon (45.23475°N, 123.04942°E, 
USA) and included a total of 15 plots (five rows (1 × 
16.2 m) with each row having three plots (1 × 4.6 m per 
plot)). Buffered zones (1 × 0.8 m) were located at the end 
of each row and between the plots to minimize overlap 
between the plots. The 15 plots were divided into 3 differ-
ent groups with different PGPR concentrations: Control 
(C, 0% PGPR); Treatment 1 (T1, 0.24% PGPR); Treatment 
2 (T2, 0.48% PGPR) (Fig.  1a). The PGPR solution was 
applied bi-weekly to the soil of each designated plot dur-
ing the experimental period (August 2020 to May 2021) 
and soil samples were collected monthly (10 sampling 
periods) (Fig. 1b). A total of 450 soil samples around the 
plant rhizospheres were collected [45 samples per month 
(15 samples per group)] throughout the sampling period 
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using a 0.5 m long soil sampling probe (Fig. 1c). Soil sam-
ples were transferred to sterile 50 ml tubes, kept in an ice 
cooler at the time of sampling, and stored at − 80 °C until 
DNA extraction.
Confirmation of PGPR
To confirm the presence of the three PGPR species:  B. 
subtilis, B. amyloliquefaciens, and P. monteilii  in the Soil 
Activator™ used in the study, a PCR assay and Sanger 
sequencing were applied using three PGPR specific 
primer pairs. Two primer pairs for B. subtilis and  B. 
amyloliquefaciens were adopted from previous reports 
and a primer pair for P. monteilii was designed in this 
study (Additional file  1: Table  S1). The Soil Activator™ 
was serially diluted with DNase-RNase free water, 
spreaded on Luria broth (LB) agar (Hardy Diagnostics, 
Santa Maria, CA, USA) for B. subtilis and B. amylolique-
faciens and MacConkey agar (Neogen, Lansing, MI, 
USA) for P. monteilii, respectively, and incubated at 37 °C 
for 24  h. The colonies were resuspended in 100  µL of 
DNase-RNase free water conducted a colony PCR assay. 
The PCR was performed in 25 µL total volume, contain-
ing 1 µL of the homogenized colony solution, 12.5 µL of 
Takara Premix Ex Taq™ (Takara™, Fisher Scientific, Pitts-
burgh, PA, USA), 400  nM of each forward and reverse 
primer, and 8.5 µL of DNase-RNase free water. The PCR 
assay conditions were varied and listed in the Additional 
file 1: Table S2. The PCR products were run on 3% aga-
rose gels stained with Gel Red Dye (10 mg/mL) (Biotium, 
Fremont, CA, USA) and visualized using a Molecular 
Imager™ Gel Doc XR+© Imaging System (Cambridge 
Scientific Products, Waterland, MA, USA).

Each PCR product for B. subtilis,  B. amyloliquefa-
ciens, or P. monteilii was purified using a QIAquick PCR 
Purification Kit (Qiagen, Hilden, Germany) following 
the provided manual. The purified PCR products were 
sequenced at the Center for Quantitative Life Sciences 
(CQLS) at Oregon State University (OSU) (Corvallis, OR, 
USA) and confirmed using Basic Local Alignment Search 
Tool (BLAST) from National Center for Biotechnology 
Information (NCBI).

DNA extraction from soil
Bacterial DNA was extracted from 0.25 g of the soil using 
a DNeasy PowerSoil Pro Kit (Qiagen) according to the 
protocol. The concentration of the isolated DNA was 
measured with a Qubit 4 Fluorometer (Thermo Fisher 
Scientific, Waltham, MA, USA) and each of the samples 
was diluted to a final concentration of 10  ng/µL using 
DNase-RNase free water.

16S rRNA library preparation
The sequencing library was generated targeting the V4 
region of the 16S rRNA gene according to the previous 
report (Kozich et  al., 2013). Briefly, the extracted DNA 
from each sample was amplified using a high-fidelity 
AccuPrimeTM pfx Super Mix (Thermo Fisher Scientific). 
Amplified DNA fragments were confirmed through 
1% agarose gel electrophoresis and normalized using a 
SequalPrep™ Normalization Kit (Thermo Fisher Scien-
tific) following the manufacturer’s recommendation. A 
library pool for sequencing was generated by combining 

Fig. 1  Experimental design for this study. a Schematic of the experimental design, b The experimental site located in Dayton, OR, c 21′′ long 
sampler probe for soil sample collection. C (no PGPR); T1 (0.24% PGPR); T2 (0.48% PGPR). Different letters indicate significant difference (p < 0.05)
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5  µL of each normalized sample and concentration was 
quantified with a Qubit 4 Fluorometer (Thermo Fisher 
Scientific). The pooled library was loaded on the car-
tridge v2. (2 × 250 bp, 500 cycles) and sequenced using 
an Illumina MiSeq at the CQLS at OSU (Corvallis).

Microbiome data analysis
The raw sequences were downloaded from the Illumina 
BaseSpace website (https://​bases​pace.​illum​ina.​com) and 
further processed with The Quantitative Insights into 
Microbial Ecology 2 (QIIME 2) version 2021. 04 (Bolyen 
et al. 2019). The raw sequences were demultiplexed and 
quality filtered using the q2-demux plugin, followed by 
DADA2 (Callahan et al. 2016). An operational taxonomic 
unit (OTU) table was then generated and the taxonomy 
of the sequenced data was obtained using Silva 132 ref-
erence database (Quast et  al. 2013; Yilmaz et  al. 2014; 
Glöckner et  al. 2017). The obtained taxonomic table 
was further processed with MicrobiomeAnalyst (http://​
www.​micro​biome​analy​st.​ca) to generate alpha and beta 
diversity plots (Dhariwal et al. 2017; Chong et al. 2020). 
Analysis of variance (ANOVA) and analysis of similarity 
(ANOSIM) tests were applied to evaluate the significant 
differences for alpha and beta diversity, respectively. The 
taxonomic data were also applied to a heatmap genera-
tion to explore the relative abundance of bacteria among 
samples (Hunter 2007).

Strawberry harvesting
The strawberries were harvested on the morning of June 
3, 2021. Approximately 34  kg of strawberries were har-
vested from the entire experimental plot (11.3  kg from 
each treatment group; C, T1, and T2). The harvested 
strawberries were distributed into disposable plastic con-
tainers based on cultivated plot and treatment group. The 
harvested strawberries were kept in a cooler and directly 
delivered to the OSU Center for Sensory and Consumer 
Behavior Research for the sensory evaluation that was 
performed on the same day.

Pomological analysis
To perform the TA and TSS (Brix) evaluation, 30 of the 
harvested whole strawberries from each group were 
distributed to three sub-groups (10 strawberries per 
sub-group) and homogenized using an Oster® Precise 
Blender 200 (Oster®, Boca Raton, Florida, USA). The TSS 
was measured in triplicates with a digital refractometer, 
RFM 81 (Bellingham and Stanley, Tunbridge Wells, UK) 
with the homogenized strawberries (AOAC 1998).

The TA was measured in triplicates by titrating 2 g of 
the homogenized strawberries with 0.1 N NaOH (pH 8.2) 
using an automatic titrator (Orion Start T910, Thermo 

Fisher Scientific) (AOAC 1998). The amount of titrant 
needed to reach pH 8.1 was noted and the titratable acid-
ity (% citric acid) was calculated according to the follow-
ing equation:

The color was measured at the center of the flat surface 
of the 30 harvested strawberries, using a Hunter Labscan 
spectrophotometer (MS/S-4500L, Hunter Associates 
Laboratory Inc., Reston, VA, USA) (Xie and Zhao 2004). 
Color values: L* (lightness); a* [green ( −  ) to red (+)]; 
b* [blue ( − ) to yellow (+)] were measured. Both a* and 
b* values were used to calculate hue angle [arctan (b*/a*)] 
and chroma [0.5 (a*2+b*2)], which were compared to 
determine color variance among the strawberries from 
each treatment group.

Volatile compounds analysis
Approximately 30  g of the harvested strawberries from 
each treatment group was homogenized into a paste. Two 
grams of the paste was weighed into a 20  mL vial and 
mixed with 8 ml of citrate buffer, which was formulated 
with 0.2  M, pH 3.2, 1% NaF (saturated with NaCl), and 
20 µL of 4-octanol as an internal standard (IS) was added. 
The gas chromatography/mass spectrophotometry (GC/
MS) was used to identify the volatile compounds. For 
the assay, an Agilent 7890 GC attached with an Agilent 
5975 mass selective detector (MSD, Agilent Technolo-
gies, Santa Clara, CA, USA) and a Gerstel MPS2 (Ger-
stel Inc. Linthicum, MD, USA) was used. The sample was 
equilibrated at 45 °C for 2 min. After equilibration, head-
space volatiles were collected on a 2 cm three-phase solid 
phase microextraction (SPME) fiber coated with divi-
nylbenzene/carboxen/polydimethylsiloxane (DVB/ CAR/
PDMS, 50/30 μm film thickness, Supelco, Bellefonte, PA, 
USA) for 40 min at 45 °C. After extraction, volatile des-
orption was performed by introducing the SPME fiber 
into a GC injection port at 250 °C in a spitless mode for 
5  min. An autosampler controlled all the steps (Gestel, 
INC., Linthicum, MD, USA).

For chromatographic separation, a ZB-Wax column 
(60  m  length, 0.25  mm i.d., 0.5  μm film thickness Phe-
nomenex, Inc., Torrance, CA, USA) was used. The col-
umn flow rate (helium) was 1.5 mL/min. The initial oven 
temperature was 40 °C and held for 4 min, then ramped 
to 230  °C at a rate of 4  °C/min, with a 10  min holding. 
Injection port, MS transfer line, and ion source tem-
peratures were 250, 280, and 230  °C, respectively. Elec-
tron ionization mass spectrometric data from m/z 35 to 
350 were collected, with an ionization voltage of 70 eV. 
Compound identifications were made by comparing 
mass spectral data samples with the Wiley 275 L database 

Volume of NaOH×Normality of NaOH× Acid factor× 100

Weight of the sample

https://basespace.illumina.com
http://www.microbiomeanalyst.ca
http://www.microbiomeanalyst.ca
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(Agilent Technology, Qian et al. 2019). The results were 
further analyzed with an Enhanced Chemstation soft-
ware E.02 (Agilent Technologies).

Sensory evaluation
The objective of the sensory test was to determine con-
sumer acceptance of the harvested strawberries from 
the C, T1, and T2 groups. A total of 52 participants (24 
females and 28 males, ages 18 to 65 years) were recruited 
from the community based on an online survey. The par-
ticipants were regular strawberry consumers and had no 
known food allergies. Five strawberries per group were 
placed on 6-inch white paper plates labeled with 3-digit 
blinding codes. Panelists were asked a series of liking/dis-
liking questions (overall liking, appearance liking, flavor 
liking, and texture liking) using a 9-point hedonic scale 
(1=dislike extremely, 9=like extremely) as well as a series 
of intensity-related questions (sweetness, tartness, and 
firmness) using a 5-point just-about-right (JAR) scale 
(1=not strong enough, 3=JAR, 5=much too strong). 
The test was performed in individual booths using com-
puterized ballots (Compusense Cloud, Compusense 
Inc., Guelph, ON, Canada) at the sensory testing facil-
ity at Oregon State University. The study protocol was 
reviewed and approved by the Oregon State University’s 
Institutional Review Board (IRB) (IRB# 2021-0953). All 
subjects gave written informed consent and were paid for 
participation.

Statistical analysis
The data obtained from the microbiome and pomologi-
cal assays (TSS, TA, and color) were analyzed for statis-
tical differences with Minitab 16 (Minitab, State College, 
PA, USA). All statistical analyses were performed using 
ANOVA to determine if there was a difference between 
treatment groups, followed by Tukey’s post hoc test to 
distinguish where specific differences were present. The 
significant difference between groups was determined 
based on the p-value < 0.05.

Results
Prevalence of the three PGPR
The PCR assay was performed and confirmed the pres-
ence of the three PGPR in the commercial product (Soil 
Activator™, Fig.  2). To further confirm, the sequences 
obtained from the PCR products were compared using 
a NCBI BLAST. The sequences showed a high similarity 
with the target bacterium; 99.3, 100, and 90.6% for B. sub-
tilis, B. amyloliquefaciens, and P. monteilii, respectively.
Microbiome analysis
The microbiome analysis of soil samples collected from 
each treatment group during the sampling period was 
performed. A total of 31,764,666 sequencing reads 

generated from 450 samples were obtained after the 
quality filtering with DADA2 (Callahan et al. 2016). The 
mean value of the frequency of sequences per sample 
was 70,588 and a total of 856 OTUs were identified to the 
genus level. The relative abundance of the PGPR genus, 
Bacillus and Pseudomonas, in the three groups was also 
observed and significantly different among the treatment 
and control groups (T1, T2, and C) (Fig. 3).

Analysis of the taxonomic distribution, particular to 
the presence of nitrogen-fixing bacteria to the genus level 
(Neorhizobium,  Paenibacillus, Roseiarcus, Rhodanobac-
ter, Devosia,  and  Microvirga), was also conducted. The 
relative abundance of 4 nitrogen-fixing bacteria in the 
three different treatment groups was significantly differ-
ent (p < 0.05) (Fig.  4). Roseiarcus, Rhodanobacter, and 
Devosia exhibited significantly higher abundance in the 
T2 group compared to the T1 and C groups, while Micro-
virga were significantly higher in the T1 and T2 groups 
compared to the C group (Fig. 4). However, the relative 
abundance of Neorhizobium  and  Paenibacillus  among 
the three groups was not significantly different (Fig 4).

It is important to determine any soil microbial popu-
lation shifts that could have had a positive impact on 
plant functions (i.e. improving tolerance against patho-
gens, degrading complex compounds, or reducing plant 
stress). To assess population shifts at the family or genus 
level, we created heat maps that spanned included the 
entire study period (Fig. 5). In the T1 group, the preva-
lence of Ramlibacter, Variovorax, Rhodanobacter, 
Sandaracinaceae, and Flavobacterium increased, while 
Pirellula was decreased (Fig 5a). In the T2 group, Ram-
libacter, Flavobacterium, and Thermoactinomyces tended 
to increase over time generally, whereas the abundance of 
Acidimicrobiaceae was consistent, except the last month 
of sampling (May 2021) (Fig. 5b).

Fig. 2  The PCR assay detecting the presence of B. subtilis (480 bp, 
lanes 1 and 2), B. amyloliquefaciens (800 bp, lanes 3 and 4), P. monteilii 
(150 bp, lanes 5 and 6). 100 bp DNA ladder (lane M), and negative 
control (lane 7)
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The soil-associated core microbiome was identified 
because these taxa are the most likely to have influ-
ence on plant functions (Fig.  6). We defined the core 
microbiome based on spatial distribution (presence 
in two or more groups) and ecological stability (pre-
sent at every sampling point). The total number of taxa 
shared by all groups was 181 (Fig. 6a). The taxa uniquely 
shared between only the C and T1 groups included 
Rubinisphaeraceae, Microtrichaceae, Flavisolibacter, 

alphaI_cluster, Roseomonas, Abditibacterium, Nitroso-
monadaceae, and Dactylosporangium. The C and T2 
groups uniquely shared Aquicella, Acidobacteriota, 
Ktedonobacteraceae, and  Edaphobaculum, while the 
T1 and T2 group shared Acidimicrobiia and Kallot-
enuales. The identified unique taxa that appeared in 
the C and T1 group were  Acidimicrobiia, Alphapro-
teobacteria, Moraxellaceae, Sphingomonadaceae, 
Iamia, Luteimonas,  and  Parviterribacter and  Bauldia, 
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Fig. 3  Box plot comparing relative abundance of the two PGPR genus (a) Bacillus (b) Pseudomonas in the soil samples collected from C (no PGPR); 
T1 (0.24% PGPR); T2 (0.48% PGPR). Different letters indicate significant difference (p < 0.05)

Fig. 4  Relative abundance of the six nitrogen-fixing bacteria at genus level in the three treatment groups. C (no PGPR); T1 (0.24% PGPR); T2 (0.48% 
PGPR). Different letters indicate significant difference (p < 0.05)
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Roseimicrobium, and Myxococcales, respectively (Fig. 6a). 
Shared taxa during the entire study period by month in 
the three groups were 133, 135, and 134 in C, T1, and T2 
groups, respectively (Fig. 6b–d).

Alpha diversity (species richness) in the different treat-
ment groups was analyzed using Chao1 and Shannon 
indices (https://​www.​micro​biome​analy​st.​ca). Both indi-
ces did not indicate a significant difference among the 
three groups (p > 0.05) (Fig.  7a, b).  Beta diversity was 
measured to assess variation in community composition 
among the samples and groups. The Jaccard index model 
was applied to examine Analysis of Similarities (ANO-
SIM) among the three different groups. The R-values 
obtained from ANOSIM vary between 0 and 1, and a 
lower R-value indicates higher similarity between groups. 
The p-value indicated there was no significant difference 
(p > 0.05) between the groups. The R-value (0.01) showed 
a high level of similarity between the groups (Fig. 7c).

Pomological evaluation
We used a pomological evaluation to investigate any 
effect of PGPR on strawberry quality. The TA, TSS, and 
color of the strawberries from each treatment group 
were evaluated. There was no significant difference of 

TA in the strawberries among the three groups (p > 0.05) 
(Fig. 8a). The strawberries from the T2 group were signif-
icantly higher in TSS compared to the C and T1 groups 
(p < 0.05) (Fig. 8b). For lightness evaluation, the strawber-
ries from the T1 and T2 groups were significantly darker 
compared to the C group (p < 0.05) (Fig. 8c). The chroma 
value, which defines color purity, was significantly lower 
in the strawberries from the T1 and T2, compared to the 
C group (p < 0.05) (Fig. 8d).

Volatile compound analysis
Volatile compound contents in the strawberries grown 
with PGPR treated soil were evaluated using a GC/
MS. A heatmap was generated with the peak area 
ratio (PAR) values of the volatile compounds shared 
in all three groups (Fig.  9). The volatile compounds 
related to fruit flavor (e.g., fruity/sweet, fresh, cit-
rusy, and burnt sugar) were also investigated. Among 
the volatile compounds, the PAR values of methyl 
butanoate (fruity/sweet) and ethyl 3-methylbutanoate 
ester (fruity) were significantly higher in the straw-
berries from the T2 group (p < 0.05). Additionally, 
the PAR value butyl acetate (fruity) was significantly 
higher in both the T2 and C groups, when compared 

Fig. 5  Heatmap expressing population shift of microorganism with soil related functions in the (a) T1 (0.24% PGPR) and (b) T2 (0.48% PGPR)

https://www.microbiomeanalyst.ca
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to T1. The PAR value of the other fruit-related volatile 
compounds, such as hexanal (green), and methyl hex-
anoate (fruity), were significantly higher in the straw-
berries from the C group (p < 0.05). The dendrogram 
indicated a closer relationship between the T1 and T2 
groups compared to the C group.

Sensory evaluation
The sensory evaluation of the strawberries cultivated 
from the three treatment groups was conducted with 
Liking and JAR evaluation. There were no significant 
differences in the overall appearance, flavor, and tex-
ture liking scores among the strawberries from the 
three groups (p > 0.05) (Table 1). Moreover, the result 
of JAR evaluation on sweetness, firmness, and tart-
ness did not indicate a significant difference among 
the strawberries from the three treatment groups (p > 
0.05) (Table 1).

Discussion
The metabolic processes of PGPR, such as phytohor-
mone production and nitrogen fixation, may promote 
plant growth directly or indirectly (Glick 1995; Su et al. 
2017). Direct plant growth promotion by PGPR requires 
either giving the plant a bacterium-produced substance, 
such as phytohormones that behave as chemical mes-
sengers or accelerate the uptake of essential nutrients, 
like nitrogen, from the environment (Glick 1995; Su et al. 
2017). However, PGPR indirectly promote plant growth 
by reducing or preventing negative impacts of one or 
more phytopathogenic organisms. This can be accom-
plished by generating antagonistic chemicals or inducing 
resistance against pathogens (Beneduzi et al. 2012; Glick 
1995). The PGPR may use one or more of these processes 
to promote plant growth and development (Glick 1995).

In the present study, three PGPR species (B. subtilis, B. 
amyloliquefaciens, and P. monteilii) were evaluated for 
their effects on the soil microbiome of strawberry plants 

Fig. 6  a A Venn diagram of shared and unique taxa among the three treatment groups. b Number of shared and unique taxa identified during the 
10-month study period (August, 2020 to May, 2021) in C (no PGPR), c T1 (0.24% PGPR), and (d) T2 (0.48% PGPR)
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Fig. 7  Alpha diversity. a Chao 1 index and b Shannon index of the three treatment groups. c Beta diversity and principal coordinates analysis 
(PCoA) originated from the Jaccard index model examining ANOSIM between the three treatment groups. C (no PGPR); T1 (0.24% PGPR); T2 (0.48% 
PGPR). Different letters indicate significant difference (p < 0.05)
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Fig. 9  Heatmaps of PAR value of volatile compounds identified in the strawberries cultivated from the three treatment groups. Square box 
indicates the volatile compounds which are significantly higher in the T2 (p < 0.05). C (no PGPR); T1 (0.24% PGPR); T2 (0.48% PGPR)

Table 1  Summary of mean values and standard deviation (SD) for the sensory evaluation on the strawberries cultivated from C (no 
PGPR); T1 (0.24% PGPR); and T2 (0.48% PGPR).

N.S not significant

Type of testing Attributes C T1 T2

Liking/Disliking
9-point Hedonic scale
(1: Dislike extremely ~ 9: Like extremely)

Overall liking (N.S.) Mean 6.92 6.92 6.92

(SD) (1.67) (1.44) (1.64)

Appearance liking (N.S.) Mean 6.75 6.90 6.79

(SD) (1.94) (1.59) (1.74)

Flavor liking (N.S.) Mean 6.81 6.98 7.02

(SD) (1.72) (1.58) (1.58)

Texture liking (N.S.) Mean 6.40 6.75 6.73

(SD) (2.00) (1.64) (1.5)

Just about right
(JAR)
(1: Much too little ~ 5: Too much)

Sweetness (N.S.) Mean 2.67 2.65 2.73

(SD) (0.68) (0.68) (0.72)

Tartness (N.S.) Mean 2.92 2.94 2.83

(SD) (0.59) (0.5) (0.51)

Firmness (N.S.) Mean 2.42 2.56 2.52

(SD) (0.72) (0.61) (0.58)
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and any subsequent impact on fruit quality.  The appli-
cation of three PGPR promoted the growth of other 
microbes such as nitrogen-fixation as a part of a syner-
gistic effect. This finding is consistent with the previous 
reports that PGPR can enhance the growth and function 
of other microorganisms (Dos Santos et al. 2020). Moreo-
ver, this study discovered the potential role of PGPR as a 
ripening agent of strawberries.

The natural environment of soil is considered one of 
the most diverse habitats comprising numerous bacteria, 
fungi, and larger organisms such as nematodes, insects, 
or rodents (Jacoby et al. 2017; Sergaki et al. 2018). Zhou 
et  al., (2002) suggested that the high microbial diver-
sity of soil environment makes it challenging to alter or 
achieve dominance of introduced microbes. Both the 
Chao 1 and Shannon indices indicated that there was 
no significant difference in microbial diversity between 
C, T1, and T2 groups (p > 0.05). The beta diversity also 
showed highly similarity (R: 0.01) among groups (Fig. 7). 
The results of the present study that showed no differ-
ence microbial diversity among groups align with previ-
ous findings by Zhou et al. (2002) that is difficult to alter 
dominant microbes. The Venn diagrams representing 
shared and unique taxa identified during the 10  month 
study period supports the challenge that the PGPR had 
colonized the soil microbiota. From the beginning of the 
study period (August 2020) and the end (May 2021) the 
numbers of unique taxa did not decrease or increase for 
the T1 and T2 groups. However, instead of observing 
the overall microbial diversity, other approaches such as 
identifying specific microbe were conducted to explore 
the prevalence and level of the PGPR, which were com-
paring the relative abundance of two PGPR genera, Bacil-
lus and Pseudomonas, in the three groups.

The three PGPR used in this study are suggested to 
promote the growth of other microorganisms as part of 
a synergetic effect to enhance plant growth via nitrogen 
fixation (Glick 1995; Pirlak and Köse 2009; Jacoby et  al. 
2017; Hashem et al. 2019; Dos Santos et al. 2020). There 
were six nitrogen-fixing taxa found in all groups: 
Neorhizobium, Paenibacillus, Roseiarcus, Rhodanobac-
ter, Devosia, and Microvirga (Rivas et al. 2002; Khan and 
Doty 2009; Beneduzi et al. 2010; Mousavi et al. 2014; Zilli 
et  al. 2015; Dobrovolskaya et  al. 2020) (Fig.  4). The role 
of the nitrogen-fixing bacteria is to convert organic nitro-
gen or nitrogen gas in the atmosphere, to a plant usable 
form, such as inorganic ammonia (ammonification). 
In the soil, the nitrogen-fixing bacteria around the host 
plant roots provided a symbiotic effect on both the plant 
and the beneficial bacteria. The fixed nitrogen is subse-
quently transported to other areas of the plant, where it is 
used to create plant tissues and supports plant develop-
ment (Peoples et al. 1995).

The microbial population shift of beneficial soil bac-
teria promotes the plant growth by enhancing resist-
ance to pathogenic bacteria, degrading complex organic 
compounds, and producing substances that enhance 
root production. The beneficial soil bacteria identified in 
the T1 and T2 groups throughout the study period were 
observed to evaluate the potential functions of the PGPR 
on promoting the growth of other beneficial soil bacte-
ria (Fig. 5). The Ramlibacter and Flavobacterium genera 
exhibited a gradual growth from the beginning to the end 
of the study period in both treatment groups (T1 and 
T2).

Ramlibacter  genus is considered a group of benefi-
cial soil bacteria that degrades sulfamethoxazole (SMX) 
which is a common antibiotic that is difficult to dissi-
pate and enters the farm environment through water or 
landfills. It becomes an environmental contaminant that 
potentially increases the rate of antibiotic-resistant infec-
tions (Rauseo et  al. 2019; Zhang et  al. 2021). The other 
functions of Ramlibacter are enhancing plant resistance 
to pathogenic bacteria (De Luca et  al. 2011). Flavobac-
terium  is associated with the ability to degrade complex 
organic compounds, known as biodegradation, around 
the rhizosphere to provide the plant with usable nutri-
ents. The decomposed organic compounds are used 
for plant growth, as well as bio-degradation which is an 
essential property to reduce the activity of toxic chemicals 
(Kolton et  al. 2016). Similarly, Sandaracinaceae which 
showed a gradual growth in the T1 group are considered 
PGPR according to reports (Mohr et al. 2012). This bacte-
rial family is known to degrade complex organic materi-
als, such as starch, chitin, and cellulose (Mohr et al. 2012; 
Sharma et al. 2016). Variovorax increased throughout the 
study period and provides plant nutrients by degrading 
polyhydroxyalkanoates (PHAs) which are emerging plas-
tic substitutes considered to be ideal for food packaging 
applications due to their biodegradability, nontoxicity, 
thermoplastic, and impermeability to gases and moisture. 
Variovorax is reported to be a PHAs degrading agent 
through its abiotic and biotic hydrolysis. The extracellular 
hydrolase enzyme in the cell wall of Variovorax converts 
the polymer of PHAs into naturally degraded forms, such 
as water-soluble monomers and oligomers, which can be 
used as plant nutrients (Masood 2017). Rhodanobacter 
is a nitrogen-fixing bacterium that had a gradual popu-
lation growth in the T1 group. Rhodanobacter produces 
indoleacetic acid (IAA), which enhances root produc-
tion of the host plant, thereby increasing nitrogen uptake 
from the soil. (Khan and Doty 2009).

Biofertilizers are organic substances containing 
microbes that can colonize the rhizosphere, enhance 
plant nutrient uptake, and promote the availability 
of nutrients to plant root hairs (Dasgupta et  al. 2021). 
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Since organic produce farming tends to avoid or limit 
the application of synthetic fertilizers, growth regula-
tors, and livestock feed additives, biofertilizers are con-
sidered alternatives with expected similar outcomes 
(Samtani et  al. 2019). The major findings of this study 
suggest that the consortium of three PGPR species: B. 
subtilis,  B. amyloliquefaciens,  and  P. monteilii,  have 
potential roles as a biofertilizer by enhancing the 
growth of other microbes as part of a synergetic effect.

Pomological effects of the PGPR on the strawberry 
quality were assessed in this study. The most notable 
outcomes were the level of TSS and the strawberry 
color among three treatment groups (Fig. 8). The color 
of the strawberry was darker from the treatment group 
treated in the order of PGPR concentration (T2 > T1 > 
C). Moreover, the strawberries from the PGPR treated 
plants contained a higher level of TSS compared to the 
C and T1 groups. Since the level of sweetness is an indi-
cator of distinct quality, it is suggested that the PGPR 
may contribute to a quality-enhancing aid (Fan et  al. 
2021). Fruit ripening is a series of physiological, molec-
ular, and biochemical processes leading to alterations in 
fruit in color, TSS, TA, flavor, texture, and aroma. The 
higher values of the TSS and TA, and the darker color 
suggest more mature strawberries (Kour et  al. 2018; 
Maduwanthi and Marapana 2019; Valero and Serrano 
2013). Considering that the length of the cultivation 
period was identical for the strawberries from all the 
treatment groups, it can be suggested that the PGPR 
presumptively behaved as a ripening enhancer. Faster 
ripening can be a potential advantage that may enable 
farmers to release the product at the desired ripening 
stage and avoid heavy competition with other pro-
ducers in markets (Maduwanthi and Marapana 2019). 
Although more trials and deeper analysis are required, 
the current finding of PGPR’s potential role on matu-
ration of strawberries can be the foundation of further 
research.

The other quality assessments measuring the amount 
of volatile compounds related to fruity/sweet flavor 
were conducted using a GC/MS. Methyl butanoate 
(fruity/sweet) and ethyl 3-methylbutanoate (sweet) 
were significantly higher in the strawberries in the 
order of T2, T1, and C group (p < 0.05) (Fig. 9). Addi-
tionally, butyl acetate (fruity/sweet) was significantly 
higher in both the T2 and C groups. The three volatile 
compounds found significantly higher in the T2 group 
(methyl butanoate and butyl acetate) were also found 
in a study conducted by Zhang et al., (2009). This study 
focused on analyzing volatile compounds in different 
strawberry cultivars and suggested that the three vola-
tile compounds developed sweet and fruity flavors in 

strawberries (Zhang et al. 2009). According to another 
study, the butanoic and acetic acids exhibited a positive 
correlation with the PGPR treated strawberry (Todes-
chini et al. 2018).

The results of sensory evaluation showed no signifi-
cant differences among the three treatment groups. 
The analytical TSS measurement indicated a significant 
difference between the three groups whereas, the sen-
sory evaluation did not show the difference. The gap 
between the sensory evaluation and the instrumental 
measurements was previously discussed by Nishinari 
et  al. (2019). In the sensory evaluation of food, the 
search for a connection between sensory and instru-
mental evaluation has been a trend to obtain more 
complete information about a product (Meiselman 
1994; Swiader and Marczewska 2021).

In this study, the group of three PGPR (B. subtilis, B. 
amyloliquefaciens, and  P. monteilii) was evaluated for 
their potential roles as a biofertilizer, using multidis-
ciplinary approaches including microbiome, pomo-
logical, volatile compounds, and sensory analyses. In 
addition, this study was conducted on a commercial 
large scale strawberry farm to assess the practical appli-
cations of PGPR that can be applied to other crops. 
Although the significant findings in this study support 
the potential benefits of PGPR, there is still little use 
of PGPR in agriculture, due to their short shelf-life in 
the formulation, and limited advertising and training 
available for farmers to apply the formulations of PGPR 
(Backer et  al. 2018). Promotion of these products are 
needed to evaluate the functionality of potential PGPR 
found in this study to verify the outcomes of the pre-
sent study. Future investigation such as metabolite 
analysis produced by rhizosphere supplemented with 
PGPR will be conducted to delineate the metabolomics 
effects of PGPR on strawberry plants.
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